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1. INTRODUCTION

This manual presents the basic theories of groundwater flow and contaminant transport as 

applied to the construction of numerical models. Chapter one discusses some of the practical 

questions that may be investigated with a numerical model, the capabilities and limitations of 

such models, a review of the different ways of approximating solutions to groundwater 

problems and the general procedure for constructing a model.

Important equations that govern groundwater flow and solute transport are reviewed in 

chapter two. Numerical modelling involves approximation of the equations especially to 

describe systems that have variable properties and irregular geometry. Analytical solutions 

are often not available for such systems. Numerical procedures used to describe groundwater 

problems create systems of equations that must be solved simultaneously. The equations 

must also be solved efficiently and fairly accurately. Some of the methods w1Dely used to 

solve simultaneous equations are therefore discussed in chapter three.

Most groundwater models are based on either the finite difference or the finite element 

formulation. Basic principles of the two methods are discussed in chapters four and five 

respectively. Examples and case studies are prov1Ded for both methods in each chapter while 

details of the case studies are prov1Ded in appendices 1 to 3. Particle tracking methods are 

presented in chapter six as alternatives to finite difference and finite element methods for the 

simulation of contaminant transport.

A list of references is prov1Ded in chapter seven and a glossary of selected terms is given in 

chapter eight. Appendix 4 contains a list of some groundwater modelling codes which are 

based on the formulations presented in this manual.
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1.1 Definition and Purpose of Modelling

Models (be they physical, analog or mathematical) are an attempt to represent reality. In 

groundwater studies, numerical models are often used as tools that help us understand the 

physical, chemical, and biochemical processes taking place in groundwater systems. They also 

help us understand the intricate interactions between these processes and prov1De the 

information we need in order to manage these processes beneficially, without harm to the 

environment. Numerical models are now used in virtually all areas of groundwater hydrology.

Groundwater models can be broadly grouped into two categories: water quantity (generally 

requiring flow models) and water quality (requiring transport models). In the water quantity 

category, models are used in aquifer management, well field design, recharge enhancement, 

determination of optimum yield, well interference studies, studies of groundwater-streamflow 

interactions, and similar problems. Models of this type have been well proven in many years 

of use.

In the groundwater quality category, numerical models are used to study the consequences of 

groundwater contamination, the means that are needed to prevent contamination, the design 

of remediation measures and to test effectiveness of alternative remediation schemes. 

Specifically, models can shed light on typical questions such as the following:

• what is the migration path of a contaminant in the groundwater?

• will the contaminant reach a specific location of interest, such as a water well?

• if migration to the location occurs, how long will it take?

• how important are attenuation mechanisms such as dilution, dispersion, and chemical 

or biochemical transformations?

• can the contaminant be removed by a specific remedial action?
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• how effective are natural or artificial remediation processes in removing the 

contaminant?

Numerical models for basic transport processes such as advection-dispersion are also well 

proven. In more advanced areas (such as flow in variably saturated media, flow in fractured 

media and the transport of multiple chemically or biochemically interacting substances in a 

spatially discrete and dynamic framework) some models have been developed and intensive 

research is continuing.

1.2 Proper and Misuse of Models

Because models are representations of real-world systems, they are generally as good as our 

understanding of the systems being modelled.

Natural groundwater systems are often highly complex and a complete description of the 

physical characteristics is in most cases impossible. Instead, the physical properties of the 

system are generally described either in terms of averages or in the form of statistical 

distributions. Also, physical/chemical/biochemical processes can interact in complex ways and 

some of these interactions (i.e. reaction kinetics) are not yet fully understood.

In view of these complexities, the use of models in a purely predictive-deterministic mode is 

risky and generally justified only in simple situations. Groundwater models are properly used 

for purposes of, for example:

• obtaining insight into complex processes,

• assessing the relative importance of the various processes occurring in a given situation 

by means of sensitivity analyses,

• analyzing "worst-case", "special case" or "what if' situations,

3



• making probabilistic predictions.

Models also play a vital role in research into the behaviour of hazardous contaminants in the 

subsurface. For example, large-scale field experiments involving chlorinated hydrocarbons 

cannot be conducted in most industrialized countries because the discharge of these liqu1Ds 

into the environment is prohibited by law. Laboratory-val1Dated numerical models prov1De a 

means to simulate such experiments without risk to the environment.

1.3 General Format for Model Construction

To construct a numerical model of a groundwater system, we first define, as closely as 

possible, the geological units and their hydrogeologic properties within the domain of interest. 

The domain should be selected such that conditions along its boundaries can be defined 

unambiguously.

If the model is designed for water quality studies, we then define processes that may play a 

role in the transport of contaminants. These processes will include, for example:

• groundwater flow,

• advective transport,

• dispersive/diffusive transport,

• chemical interactions,

• radioactive or biological decay,

• gravity forces,

• thermal processes,

• capillarity.

In most cases, only a limited number of these processes act at the same time. When the 

relevant processes are simple and act sequentially we speak of a linear system. For example,
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advective-dispersive transport of a non-reacting dilute solute is a linear process. When the 

processes are coupled in complex relationships, or when the parameters controlling a process 

depend on the process itself, we speak of a nonlinear system. A nonlinear process occurs, for 

example, when the transport of a solute affects the flow system through the flu1D density, or 

when an ox1Dation reaction depends on the amount of oxygen available while the oxygen 

available in turn depends on the amount consumed. Nonlinear systems are more difficult and 

costly to solve. While exact solutions are available for most linear problems, nonlinear 

problems are nearly always solved by means of numerical methods.

The processes taking place in a groundwater system are subject to physical laws such as:

• constitutive laws (Darcy’s Law, Fick’s Law),

• conservation laws for flu1D mass, solute mass, thermal energy,

• force equilibrium laws.

These physical laws can be expressed mathematically in terms of governing equations which 

are usually partial differential equations. In cases of linear processes with simple geometry, 

these equations can generally be solved by analytical methods. In general cases involving 

nonlinear processes or complex geometry, the equations are solved numerically.

The mathematical description of the relevant physical laws, together with the description of 

the hydrogeology and the definition of the boundaries, constitute the conceptual model of the 

system. In order to solve the mathematical equations numerically, the system is discretized 

and the partial differential equations are approximated by algebraic equations at a finite 

number of points (nodes) in the domain. The numerical solution then solves the resulting sets 

of algebraic equations. Typically, several thousands of simultaneous equations are solved 

repeatedly in contaminant transport problems.

The entire solution process is formally expressed in a computer code. Although often the
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computer code is seen as "the numerical model", the most important component is actually 

the conceptual model which has been selected to represent the real physical system and the 

processes taking place within this system. Thus great care must be taken in defining the 

conceptual model.

Model Verification. Val1Dation and Calibration

Before the model can be applied to a real system, it must first be verified to ensure that the 

algebraic equations are solved correctly and that the code is error-free. This is generally done 

by comparison of model results with corresponding results produced by an analytical solution 

applied to a geometrically simple system subject to the same processes.

The model must also be val1Dated (Tsang, 1991) to ensure that it actually represents the 

physical processes it is supposed to represent. This is done by comparing model results to 

field or laboratory observations. The comparison need not necessarily yield an exact 

agreement, but should prov1De proof that the physical/chemical/biochemical processes are 

val1Dly and unambiguously represented in the model.

Disagreements between model results and field observation may be due to factors such as a 

lack of completeness in the data, measurement error, or less-than-perfect knowledge of the 

physical parameters. To obtain an improved match, the model can be calibrated by adjusting 

some' of its parameters. However, only a small number of parameters can be adjusted in this 

way to preserve the uniqueness of the results. If different combinations of parameters values 

lead to the same result, the simulations will be non-unique.

Once the model is properly verified and val1Dated, it can be applied to simulate the processes 

occurring in a real system, to perform sensitivity analysis, and to investigate "worst-case" 

situations. At this stage, the goal of the modeller should be to use the model to obtain the 

best possible insight into the system, and to use this insight in developing appropriate

6



strategies for achieving the overall objectives of the study.

1.4 Overview of Numerical Methods for Groundwater Models

The types of numerical methods that are most often used in groundwater modelling are Finite 

Differences, Finite Elements, and Particle Tracking. The first two of these approaches share 

the basic formulation of the solution as a boundary value problem. They originate from the 

two classical concepts of differentiation and integration in mathematics. The finite difference 

method has the advantage of being conceptually simple, while the finite element method is 

more flexible in representing domains with irregular geometry or anisotropic and 

heterogeneous media. In terms of accuracy, both methods are equivalent. Either of these two 

methods can be applied to the solution of flow and transport problems, and either allows the 

incorporation of chemical/biochemical interactions.

The user of numerical models should be aware of certain pitfalls which may affect the quality 

of the results obtained. One of these pitfalls is numerical dispersion, which may arise in the 

solution of the transport equation by either finite differences or finite elements. Techniques 

for its control have been developed and are easy to implement Other pitfalls occur in the 

solution of nonlinear equations which describe flow in variably saturated porous media and 

transport with chemical or biochemical reactions.

The third of the commonly-used numerical methods, Particle Tracking, is applicable to the 

solution of transport problems only. This technique does not solve a boundary value problem, 

but instead cons1Ders the fate of contaminant particles as they migrate through the flow 

system. Particle tracking models are usually coupled with either finite difference or finite 

element models for determining the flow field. The main advantages of this technique are a 

simple and understandable concept, and a lack of susceptibility to numerical dispersion. A 

disadvantage is that chemical/biochemical interactions cannot be easily incorporated in a 

general way. The method is particularly useful for the simulation of hydraulic remediation
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measures.

An excellent text on groundwater modelling at the introductory level is Kinzelbach (1986). 

Huyakom and Pinder (1983) give an advanced treatment of numerical methods with a strong 

mathematical basis. Luckner and Schestakow (1986) present a comprehensive survey of all 

types of migration processes in groundwater, with some basic numerical methods. Other texts 

of valuable topics include Wang and Anderson (1982), Bear and Verruijt (1987); and Molson 

et al. (in preparation).

2. REVIEW OF GOVERNING EQUATIONS

The main equations that govern the physics of groundwater flow and contaminant transport 

are the Darcv equation, the groundwater flow equation, and the transport equation. These are 

supplemented by the appropriate relationships expressing chemical and biochemical 

transformations.

2.1 Darcy Equation

The Darcy equation relates the flow of water through a porous medium to the driving force, 

which is the hydraulic gradient. In general, natural groundwater systems are anisotropic (i.e. 

exhibiting preferred directions of flow) due to geologic factors such as the sedimentary 

structure of the medium, or fracturing. In the case of anisotropy due to the sedimentary 

structure, flow parallel to the layering is generally favoured over flow across the layering.

The general form of the Darcy equation for three dimensional (3D) anisotropic media is (Bear, 

1979; Freeze and Cherry, 1979):
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or in short form

where xi, = (x,y,z) are the coordinates of a point, qt is the specific discharge or Darcy flux 

(L/T) in the direction i in the medium, Ky is the hydraulic conductivity tensor (L/T), 

 =p/pg+Z is the hydraulic head (L), with p being the pressure, p the density, g the 

gravitational acceleration, and Z the elevation head. The term pg  describes the potential 

energy of the water at point (x,y,z). The physical meaning of a typical term in Kij say Kxy, 

is literally "the ease at which water flows in the x-direction due to a driving force acting in 

the y-direction". The negative sign indicates that groundwater flows toward the direction of 

decreasing hydraulic gradient.

When the coordinate axes are aligned parallel and perpendicular to the direction of the 

stratification (the principal directions of flow), a driving force applied in one of the coordinate 

directions will produce flow only in that direction. The Darcy equation then simplifies to:

9



where (x',y',z') refers to the principal directions of the medium, and Kij refers to the principal 

components of the hydraulic conductivity tensor.

2.2 General Groundwater Flow Equation

The flow equation is based on the continuity of flu1D mass in the porous medium. The 

general form for heterogeneous isotropic media, without sources or sinks, is (Bear, 1979):

where t is time, and Ss = pg(a+0|3) is the specific storage of the porous medium, with 0 being 

the porosity, a  the compressibility of the porous medium, and (3 the compressibility of the 

flu1D.

The above equations are val1D for one-, two- and three-dimensional systems. Although most 

natural aquifer systems are, strictly speaking, three dimensional, 3D models require large 

amounts of data and are therefore applied mainly in specialized situations, or for research 

purposes. In practical applications, two-dimensional (2D) forms are used wherever possible. 

Two types of 2D models, the areal model for confined or unconfined aquifers, and the cross- 

sectional model for flow systems with depth-dependent processes, are in common use. The 

governing equations for these two types of models are discussed below.
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2.3 Confined/Unconfined Aquifer Equations

If flow in an aquifer is predominantly horizontal (Fig. 1), the general 3D equation can be 

integrated vertically over the aquifer thickness to obtain, in the case of a confined aquifer 

(Bear, 1979):

where T = Kb is the aquifer transmissivity, with b = b(x,y) being the aquifer thickness, S = 

Ssb is the aquifer storativity, K'/b'(<t>-<K) represents the leakage flux from neighbouring 

aquifers, with K' being the vertical conductivity of the aquitard, b' being the aquitard 

thickness, and <)>' the hydraulic head in the neighbouring aquifer. The term Q represents the 

water injected or withdrawn at wells.

Figure 1: Confined/unconfined aquifer system
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In the case of a watertable aquifer, the equation can be written as:

where h is the hydraulic head at the watertable, b=h(x,y)-B(x,y) is the saturated thickness, with 

B being the hydraulic head at the aquifer bottom, Sy is the specific yield, and qg is the 

recharge at the watertable. The watertable aquifer equation is nonlinear since the effective 

transmissivity Kb depends on the unknown head h through the saturated thickness b.

The boundary around the periphery of the domain (Fig. 2) should follow some 1Dentifiable 

natural feature. One possible feature is an open body of water such as a stream which is in 

contact with the aquifer, prov1Ding a fixed head (first-type or Dirichlet) boundary condition 

of the form:

where hw is the hydraulic head at the boundary. An impermeable barrier (or a hydrological 

div1De) is also a suitable boundary which prov1Des a zero flux (second-type or Neumann) 

boundary condition of the form:

Other possible choices are a boundary where the flux is known, or a boundary following a 

streamline, giving again a zero-flux boundary condition.

The basic assumptions in areal aquifer models or multi-aquifer models are:

• flow in the aquifer is essentially horizontal,

• flow in the aquitards is essentially vertical,

• storage in the aquitards is negligible.

12



Figure 2: Boundary condition for areal flow model (modified 

from Bear, 1979)
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These three assumptions form the basis for representing flow as 2D in the areal plane of the 

aquifer, and as one dimensional (1D) vertical in the aquitards with vertical flow being 

proportional to the head difference between the neighbouring aquifers. The val1Dity of these 

assumptions must be cons1Dered when interpreting the results of 2D plan-view models. The 

first two assumptions are reasonable whenever the permeability contrast between the aquifers 

and aquitards is at least 2 orders of magnitude. The third assumption neglects the transient 

response in the aquitard which will normally occur when a head change is imposed in one of 

the aquifers. The time taken to equilibrate the system is given by (Frind, 1979):

where S/ is the aquitard specific storage. On the basis of this relationship, the third 

assumption above is reasonable if ^ is small in relation to the time period of interest.

2.4 Potential/Streamfunction Equations

Potential/streamfunction models applied in the cross-section are useful in situations where 

chemical or biochemical reactions play a role. Such reactions are often depth-dependent since 

the necessary reactants (e.g. oxygen, organic carbon, sulf1Des) occur at concentrations that vary 

with depth. Also, the reactions may be nonlinear due to the limited availability of the 

reactants. For these reasons, the indiv1Dual transport processes cannot be averaged in the 

vertical over the aquifer thickness; instead, the vertical dimension must be represented 

explicitly in the model.

A contaminant entering the ground will first pass through the unsaturated soil zone and then 

enter the saturated groundwater zone. Although both of these zones can be modelled together
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(Akindunni et a l, 1991; Akindunni and Gillham, 1992), the modelling scale is generally 

different. In order to stimulate unsaturated flow in a physically val1D way, the soil moisture 

profiles must be adequately resolved in the model; this generally results in spatial 

discretizations of the order of centimeters. This means that, in order to keep the model 

manageable, its size will be restricted to a few meters (Akindunni, 1987).

In the saturated groundwater zone, on the other hand, the spatial scale of interest in 

contamination problems is often of the order of hundreds or thousands of meters, since both 

the source and the destination must be included in the model. The time scale may be of the 

order of several years. Therefore in problems where migration processes in the saturated zone 

are relevant, the unsaturated zone is often excluded. Although the flow direction in the 

saturated zone is predominantly horizontal, vertical velocity components are important because 

they can play a controlling role in chemical or biochemical reactions. We will focus here on 

saturated groundwater systems exclusively.

A cross-sectional flow and transport model can therefore be bounded at the top by the 

watertable. If the longer time scale is of interest, seasonal fluctuations are generally neglected 

and a long-term average flow system is assumed. The model domain can be visualized as a 

slice of unit thickness cut from the aquifer in the direction of groundwater flow (Fig. 3). The 

cut should follow the watertable gradient.

15



Figure 3: Typical cross-sectional flow diagram

A numerical problem can arise in cross-sectional transport modelling on account of the spatial 

scale. This arises because the length of the cross-sectional domain can be greater by several 

orders of magnitude than the w1Dth (i.e. the aquifer thickness), that is, the model domain can 

be very long and thin. The contrast between the horizontal and vertical scales can cause 

serious inaccuracies in the calculation of the groundwater velocities by means of Darcy’s 

equation. This can in turn cause problems in the accurate definition of the flow paths that are 

needed in order to position the plume at the correct depth in the aquifer, and to facilitate the 

correct simulation of spatially dependent reactions.

This problem can be overcome by formulating the flow problem both in terms of the hydraulic 

potential ө and the streamfunction Ѱ. The steady-state form of the potential equation is used 

in this approach. The two governing equations are, in general form (Frind and Matanga,
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1985):

or, for the case where the coordinate axes coinc1De with the principal directions:

where the streamfunction Ѱ has dimensions of discharge (L2/T). In the above two equations, 

the primes to designate principal directions have been omitted.

The Darcy equation is related to the streamfunction through the relationship:

In an isotropic medium, the potential contours ө and the streamfunction contours (the 

streamlines) Ѱ intersect at right angles.

A useful property of the streamfunction is that the discharge in a streamtube, ∆Q, equals the 

streamfunction increment Ay (Fig. 4). The specific discharge (Darcy velocity) is therefore:
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which is the streamfunction increment divided by the streamtube w1Dth Ap. Therefore, the 

streamfunction allows the determination of groundwater velocities independent of the Darcy 

equation. For long thin systems, streamfunction-derived velocities are usually more accurate 

than potential-derived velocities (Frind et al., 1985).

Figure 4: Streamtube in isotropic system
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The streamfunction further relates the advective travel distance As to the travel time At 

through:

which is simply the area of the streamtube between the points s0 and s0 + As, multiplied by 

a constant (see Fig. 4).

To solve the governing equations, boundary conditions with respect to both ө and Ѱ must be 

prov1Ded (Fig. 5). For the case where the location of the watertable is known, the watertable 

boundary condition for ө is:

where hw is the watertable head. The boundary condition for Ѱ is expressed in terms of the

component of the streamfunction gradient gn in the direction normal to the boundary, which 

is (Frind and Matanga, 1985):

Thus the normal component of the streamfunction gradient is equal to the negative rate of 

change of head along the watertable.

For the case where the recharge is defined at the watertable but the watertable location is 

unknown, the boundary condition for Ѱ is given in terms of the Darcy flux as:

where qw is the specified recharge flux in the direction normal to the boundary. The boundary
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condition for Ѱ is specified in terms of the streamfunction value along the watertable, which 

is obtained by summing the recharge entering the system along that boundary:

where Ѱ  is a reference value, and b designates the boundary.

Figure 5: Boundary conditions for cross-sectional flow model
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Along the bottom of the domain, we usually assume an impermeable boundary. The boundary 

conditions are:

which expresses that the flux across an impermeable boundary is zero, and that the boundary 

is a streamline, the value of which is usually set to zero. Similar boundary conditions can be 

defined for the lateral boundaries.

Due to the basic assumption of flow in the plane of the cross-section, source/sink conditions 

such as pumping or injection wells are excluded, except when placed perpendicular to the 

plane of the section.

2.5 Transport Equation

The equation governing the advective-dispersive transport of a solute, subject to linear sorption 

and first-order decay, is (Bear, 1979; Luckner and Schestakow, 1986):

where c is the concentration (usually expressed as relative with respect to the source 

concentration c0, or c/c0), Dy is the dispersion tensor, Vj = q/9 is the average groundwater 

velocity, and X, = In 2/t½ is the decay constant, with t½ being the half-life. The retardation 

coefficient R is defined in standard form as (Freeze and Cherry, 1979):

where pb is the bulk density of the medium, and Kd is the linear distribution coefficient. The
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governing equation is based on the assumption that both the adsorbed and the dissolved phases 

decay. Further assumptions are that the flu1D is incompressible, that there are no internal 

sources or sinks, and that the medium does not deform.

Figure 6: Boundary conditions for 2D cross-sectional 
transport model

The transport equation requires boundary conditions all around the domain (Fig. 6) for 

solution. One possible form of boundary condition is in the form of a specified concentration, 

which can be used in cases such as that of a waste lagoon in contact with the watertable. This 

gives the first-type or Dirichlet boundary condition. Alternatively, the boundary condition can 

be specified in the form of a known mass flux, which applies in cases such as a leaking 

landfill situated above the watertable where leachate is produced by rainwater percolating 

through the waste and the unsaturated zone to the watertable. This is known as a third-type
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or Cauchy boundary condition, which takes the form:

where q0 is the known boundary recharge, c0 is the concentration of the solute carried by the 

recharge water, and Dn is the dispersion coefficient in the direction normal to the boundary.

At parts of the watertable outs1De of the source, the above boundary condition holds with c0=0. 

The remaining boundaries of the model (2D or 3D) are usually selected such that the 

contaminant does not reach the boundary. A boundary condition of either c = 0 or 

dc/dn = 0 (second type or Neumann boundary condition) can then be used. When a 

contaminant plume reaches a boundary, the correct boundary condition is the free exit 

boundary (Frind, 1988), which is built into the numerical solution and does not require any 

specified boundary values.

2.6 The Classical Concept of Dispersion

The classical definition of the 3D dispersion tensor for a medium that is isotropic with respect 

to dispersion is (Bear, 1979):

where and are the longitudinal and transverse dispersivities, respectively, D* = Ddt  is 

the effective diffusion coefficient in the porous medium, with Dd being the molecular diffusion 

coefficient in solution and x the tortuosity of the medium, and 5 is the Kronecker delta. For 

1D transport, this simplifies to:
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In two dimensions, the components of the symmetrical dispersion tensor take on the form:

In a coordinate system following the principal directions of the dispersion tensor, which are 

parallel and perpendicular to the flow lines, the above components become:

The above classical definition is based on the assumption that the medium is isotropic with 

respect to dispersion, which means that unique values of longitudinal and transverse 

dispersivity can be defined for a given medium. As a consequence of that assumption, a 

contaminant plume would always exhibit unique spreading characteristics in the longitudinal 

direction as well as in the traverse direction, regardless of the direction of flow in the aquifer. 

We will discuss this premise further in the next section.

Figure 7 shows a typical advective-dispersive plume in 2D, based on the above theory. An 

analytical solution developed by Cleary and Ungs (Wexler, 1989) was used to generate the 

plume. The analytical solution is val1D for the case of a 2D semi-infinite medium, a
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continuous symmetrical line source at the origin, and a first-type source boundary condition. 

The plume is shown both in the form of concentration contours (a), and in the form of the 

concentration profile at the centerline of the plume (b). The base case parameters are 

v=0.1m/day, α L  =1.0 m, αT=0.1 m, R = 1.0, no decay.

In Figure 8, the parameters are varied one at a time, except for the velocity, and the resulting 

effect is compared with the base case. We see that increasing (a) produces a typical 

stretching of the profile, while increasing αT by the same proportion (b) gives a much different 

response due to the increased transverse spreading which depresses the profile. Doubling R 

reduces both the advective advance and the dispersion by one half. Introducing a decay term 

with t1/2=l year generates a profile that appears to be dominated by the exponential decay 

component

Figure 7: Advective-dispersive plume, contours and profiles
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(a)

(b)

(c)

(d)

Figure 8: Advective-dispersive plume profiles at 2 years showing longitudinal, 

transverse dispersivity and retardation factor.
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2.7 Scale-Dependent and Asymptotic Dispersion

The assumptions underlying the classical definition of dispersion are now known to be 

valiD only at the microscale, i.e., the scale of the pores and grains in the medium. For 

natural heterogeneous media, it is known that transverse dispersion differs in the horizontal 

and vertical directions, and that the dispersivity itself may increase with scale. The scale 

dependence of dispersivity is a result of the heterogeneity of natural aquifer materials. As 

a contaminant enters the aquifer at the source, the initial dispersing mechanism is governed 

by the local pore-grain structure. As the contaminant migrates through the system, it 

progressively encounters more heterogeneities which cause the dispersing mechanism to 

increase. The dispersivity increases until a plateau value, the asymptotic dispersivity, is 

reached. Gelhar and Axness (1983) derived, on the basis of statistical analysis, expressions 

for the components of the asymptotic dispersivity tensor. They found that if flow is in a 

general direction (i.e., not parallel to the stratification), the dispersivity components are all 

controlled by the heterogeneity of the medium and will therefore all attain asymptotic 

values. For the special case where flow is parallel to the stratification, only the 

longitudinal dispersivity becomes asymptotic while the transverse dispersivities remain 

controlled by local processes.

Sudicky et al. (1983) showed by means of detailed field measurements that the transverse 

dispersivity in a natural aquifer differs in the horizontal and vertical directions. This can be 

explained by the differences in the sedimentary structure with respect to these directions. For 

the case of flow parallel to the stratification, the principal components of the asymptotic 

dispersion tensor can be represented as:
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where is the local longitudinal dispersivity, and αTH and αTV are the transverse horizontal 

and transverse vertical dispersivities, respectively. The asymptotic longitudinal dispersivity 

A11 is defined as (Gelhar and Axness, 1983):

σ2y
where is the variance of the logarithm of the hydraulic conductivity, y is the correlation

length of the heterogeneities of the medium, and y is a flow factor which was later found to 

be equal to 1.

Sudicky (1986) examined the spatial variability of hydraulic conductivity of a sandy aquifer 

in Ontario by means of highly detailed permeameter tests. He found the sand to consist of 

numerous thin and discontinuous lenses. He also found the hydraulic conductivity of the sand 

to vary over more than one order of magnitude. The resulting log conductivity variance was 

reported to be 0.38 and the correlation lengths of the lenses 2.8 m and 0.12 m in the 

horizontal and vertical directions, respectively. This study prov1Ded the first data suitable for 

the calculation of asymptotic dispersivities.

σ2
The asymptotic dispersivity relationships A11= σ y was validated in 2D by Frind et al. (1987).
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The physical basis of the asymptotic growth arises from the process of advective-diffusive 

exchange that takes place in a heterogeneous medium consisting of lenses having higher and 

lower values of hydraulic conductivity. In such a medium, a solute will advance advectively 

faster in a high-conductive zone and the resulting concentration gradient between high- and 

low-conductive zones will give rise to transverse diffusive transport. Mass is thus removed 

from the front of the plume and stored temporarily in the low-conductive layers. When the 

plume has passed the low-conductive zone, the concentration gradient reverses and the mass 

moves back into the high-conductive zone to be added to the tail end of the plume. In an 

aquifer containing many of these zones of differing conductivity, the aggregate of these mass 

exchanges, seen over the system as a whole, results in an apparent growth of the overall 

dispersivity. Eventually, the process stabilizes at the level of the asymptotic dispersivity. The 

study also confirmed that the transverse vertical dispersivity remains at its local value.

The dispersivity reaches its asymptotic value at a travel distance of about 40-50 correlation 

lengths from the source (Frind et al., 1987). For pre-asymptotic conditions, unfortunately, 

rigorously val1D scale-dependent dispersivity relationships that are easy to implement in 

numerical models have not yet been developed. Although the microscale approach is val1D, 

its cost renders it impractical in normal situations. A dilemma therefore arises in the 

modelling of advective-dispersive transport in the pre-asymptotic range. One possible option 

may be to select an empirical dispersivity function that takes on a local value at the source 

and grows to the required asymptotic value. Fortunately, field problems may not be overly 

sensitive to the precise value of the dispersivity as long as it is in the correct range (Frind and 

Molson, 1989).

3. SOLUTION OF SIMULTANEOUS EQUATIONS

Numerical solutions of problems in groundwater studies create systems of simultaneous 

equations which could be very large. The number of unknown parameters in these equations 

are often between 100 and 1000, sometimes up to one million. The equations are also 

generally banded. Efficient techniques are required to solve these equations. The equations
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are usually represented using matrix notations.

Cons1Der the following set of linear equations:

In matrix notation, this set of equations is written as:

or in the general form:

The coefficients are contained in [A], the vector of knowns is {b} while {x} is the vector of 

unknowns. The matrix equation can be written in a more simplified notation as [A] {x} = 

{b}, where [A] may have n rows and m columns. When n is equal to m, the matrix is 

described as a square matrix. Other special forms of matrices include the following: •

• symmetric matrix - The elements in the matrix are symmetric with respect to the 

diagonal, (i.e., aij = aji)
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• skew symmetric matrix - A square matrix with a negative symmetrY with respect 

to the diagonal (i.e. aij = a ji for i = j)

• diagonal matrix - A square matrix in which all elements are zero except at the 

diagonal (i.e., aij = 0 for i = j)

• 1Dentity (or unit) matrix - A diagonal matrix with diagonal elements equal to unity 

(i.e., aij = 0 for i = j; aij = 1 for i=j). It is denoted as [I].

• triangular matrix - A square matrix with all - zero elements either above or below 

the diagonal elements.

• null matrix - A matrix in which all elements are zero (i.e., ay = 0).

3.1 Matrix Operations

3.1.1 Addition and Subtraction

Two matrices, [A] and [B] can be added (or subtracted) to obtain [C] only if their dimensions 

are the same. The procedure requires that corresponding elements of [A] and [B] are added 

(or subtracted) to obtain [C] such that cij = aij ± bij for all values of i and j.

3.1.2 Multiplication

A matrix [A] can be multiplied by [B] only if the column size of [A] is 1Dentical to the row 

size of [B]. The product formed, [C] = [A] [B] will have the column size of [A] and the row 

size of [B]. The elements in the product are obtained as:
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Note that matrix multiplication is not commutative (i.e. [A] [B] = [B] [A]). In many cases, 

[A] [B] may be defined while [B] [A] is undefined.

3.1.3 Transpose of a Matrix

The transpose of a matrix, denoted as [A]T can be obtained from [A] by interchanging the 

column and row elements such that:

The transpose of a product is obtained by:

3.2 Definitions

3.2.1 Determinant of a Matrix

The determinant of a matrix [A] (denoted as det A or |A|), and defined only for a square 

matrix) is obtained as:

where the cofactor (cof) is defined by:

and the minor is the determinant of the submatrix obtained by deleting the ith row and the j th
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column of the original matrix. Using the definition above, the determinant of a 2 x 2 matrix 

can be obtained as:

Similarly, the determinant of a 3 x 3 matrix can be obtained as:

3.2.2 Inverse of a Matrix

The inverse of a matrix (denoted as [A]-1) is defined by:

where the adjoint (adj [A]) is obtained as:

For example,
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The inverse satisfies the equalities:

3.3 Matrix Solution by Inversion

Given a set of simultaneous equations:

(1Dentity matrix)

The vector of unknown parameters can be obtained by pre-multiplying each side of the matrix 

equation by the inverse of [A], thus:

Exercise:

Solve by Inversion
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3.4 Cramer’s Rule

This is a convenient method for hand calculations of small (2x2 or 3x3) system of equations:

The kth term in the unknown vector {x} is:

|Ak| is obtained by replacing the kth column in |A| with the vector {B}:

The number of operations (multiplication and division) is On4 (of the order of n4) where n is 

the band w1Dth.

Exercise

Solve by Cramer’s rule:
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3.5 Gaussian Elimination

This is the most w1Dely used method of solving simultaneous equations.

3.5.1 Elementary Row Operations

Consider the system:

From (2), subtract (1) x a21/a11 to obtain (2').

For example:

In a similar manner, subtract (1) x a31/a11 from (3) and (1) x a41/a11 from (4). 

(a11 is the pivot). This results in:

Next, subtract (2') x a32/a22' from (3') and (2') x a42'/a22' from (4') to obtain:

Note that the new pivot is a22'. Then subtract (3") x a43 /a33" from (4") to obtain:
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We can now solve for x, starting at the bottom, thus:
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3.5.2 Gauss-Jordan Elimination

The elimination is also done on the upper part of the matrix above the diagonal. Each row 

is div1Ded by the appropriate pivot, resulting in:

The reader is referred to section 6.4 in Hombeck (1975) for details. Because we always 

div1De by the pivot, it is numerically important that the pivot is non-zero.

3.5.3 Matrix Inversion by Gauss-Jordan Elimination

For a square matrix [A], an inverse [A]-1) is defined such that the product gives a unit matrix,

thus:

i.e. [A] is transformed to [I]:
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The same transformation is performed on the right-hand s1De to obtain [A]-1:

3.5.4 Generalized Gauss Elimination Procedure (L - U Decomposition)

This procedure is useful in problems with repeated right-hand s1Des such as in time marching 

schemes or multiple loading conditions. Cons1Der:

If this corresponds to a real physical system ([A] is positive-definite), then [A] can be 

decomposed or factored into unique upper and lower triangular matrices:

so:

let:

then:
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Solve for y:

etc.

Solve for x from:
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The sequence of elementary row operations can be expressed as (for 4 x 4 )

where:

let:
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then:

but the result of the elementary row operations is an upper triangular matrix. Since the 

decomposition must be unique, this means that:

likewise:

since:
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Premultiply above equation by [L*]-1:

therefore:

Thus, after obtaining [L] and [U], the right hand side {B} can be handled independently. So:
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multiply out:

[L] contains the pivots used in the elementary row operations to obtain [U].
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The general procedure to solve [A] {x} = {B} is as follows:

1. Decompose [A] to obtain [L] and [U]

obtain [U] from elementary row operations 

store pivot elements in [L]

2. Solve [L] {Y} = {B}

3. Solve [U] {x} = {y}

Repeat steps 2 and 3 only for repeated right-hand s1Des.

3.5.5 Ill-Conditioning

If det A is small in relation to the norm (magnitude) of the matrix, it may be ill-conditioned.

However, if the matrix represents a real, well-posed physical problem that is known to have 

a unique solution, ill-conditioning does not generally occur.

3.5.6 Row and Column Interchange

If a pivot is small, it may cause problems due to roundoff errors (note that a zero pivot will 

cause a solution failure). This can often be avo1Ded by re-arranging rows or columns to place 

the largest element in the pivot position, thus:
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Row interchange

Column interchange

Note: Column interchanges must be kept track of in order to replace the unknowns to their
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original positions after solving the equations.

3.5.7 Banded Matrices

Most physical problems lead to banded matrices.

Operations Count

Banded matrices

To solve [A] {x} = [B] with A banded, requires the following number of operations 

(multiplication and division):

• about nb2 operations are required to decompose, and

• 2nb operations are required to solve

To solve by inversion and back multiplication {x} = [A]-1 {B} requires:

• inversion - about n3 (Gauss-Jordan method)

• multiply - about n3

Note that the advantage of the band is lost when solving by inversion.

47



3.6 Cholesky Method

This method is applicable to symmetric positive-definite matrices only. Being symmetric the 

lower and upper triangular matrices obtained after decomposition will be the transpose of each 

other.

[A] = [L] [U] 

Multiply out:

Row 1:
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Row 2:

etc.

In general, the decomposition is:

This is done independently of the right-hand s1De. The solution is completed by forward and

backward substitution.
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Equation with multiple riaht-hand sides:

Forward substitution:

Backward Substitution:
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3.7 Thomas Algorithm

This method is applicable to tr1Diagonal matrices.

It can be shown that if [A] is banded, [L] and [U] will also be banded and have the same band 

w1Dth as [A].

Let [L] [U] = [A]

Equating the product with [A] above, it can be deduced that:
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Solve: [A] {X} = {B}

Forward Substitution:

Backward Substitution:
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Exercise

Solve by Thomas Method:

3.8 Gauss-Se1Del Iterative Method

This method is generally used for sparse, diagonally-dominant matrices. 

Cons1Der:
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1. a11x1 + al2x2 + a13x3 = b1

2. a21x1 + a22x2 + a23x3 =  b2

3. a31X1 + a32x2 + a33x3 = b3



Make an initial guess for x2 and x3 (in the absence of better information, set them to 0). Solve 

1 for x1:

Using the calculated value for x1 and the initial guess for x3, solve 2 for x2, thus:

Then solve 3 for x3, thus:

Repeat the procedure until successive results agree. The general Gauss-Se1Del formula is:

where Xj on the right-hand s1De is always the most recent value. In this method, convergence 

is guaranteed if:
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However, convergence may also be obtained if this condition is not satisfied, as long as the 

diagonal term is the largest number in the row:

3.8.1 Convergence Criteria

Convergence criteria can either be absolute or relative.

Absolute:

This criterion is often used when the magnitude of the results and the desired accuracy 

(number of decimals) are known. Note that results may continue to change after the 

convergence criterion have been satisfied.

This criterion tests the percentage change in each unknown. It may be used when the 

magnitude of results is unknown but may cause problems if some numbers are close to zero.
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3.8.2 Point Relaxation

If convergence is monotonic, it could be accelerated by extrapolation. If it is oscillatory, 

convergence can be improved by damping the oscillations.

Convergence can be accelerated by extrapolation from xj(k+1) or in the case of (b), convergence 

could be improved by damping the oscillations. This is done by modifying calculated values 

obtained by the iteration formula according to:
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The value of xi(k+1) is understood to be that calculated by the iteration formula. This can also 

be written as:

Thus the value used is the weighted average between the calculated value and the previous 

value, such that:

0 < y < 1 underrelaxation (damping)

X = 1 standard Gauss-Se1Del iteration

1 < y < 2 overrelaxation (acceleration)

3.8.3 Advantages and Disadvantages of Iterative Methods

Some of the advantages of iterative methods include the following:

• it is self-correcting

• round-off error does not accumulate

• it can be programmed to operate only on non-zero terms

• there is no matrix fill-in

• it is suitable for calculators and small computers

The major disadvantage of iterative methods is that they need fast convergence and good 

initial guess to be competitive with direct methods.

4. FINITE DIFFERENCES

4.1 Basic Principles

The basic objective of finite difference methods is to approximate the differential terms in the 

governing differential equations by corresponding different terms. The resulting difference
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equation is then written at a finite number of points in the domain. This results in a set of 

algebraic equations which are easier to solve than the original partial differential equation.

The procedure is easily visualized in 1D. If, for example, u=u(x) is a continuous function, 

then:

or

where e is an error term.

The error term can be evaluated by using a Taylor expansion for u(x+Ax) about x, as follows 

(See Fig. 9):

which can be rearranged to yield:

where the terms beyond the first term on the right hand s1De represent the numerical error e.

Since the error is dominated by the leading term (Ax/2)u"(x), e is sa1D to be of the order Ax 

or 0(Ax). The above approximation of Au/Ax is known as a forward difference 

approximation, which is first-order accurate.
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Figure 9: First-derivative approximations

A backward difference approximation is obtained by performing a similar expansion for u(x- 

Ax) about x. This results in:

which is also First-order accurate.

An approximation with a higher-order accuracy can be obtained by combining the forward and 

backward approximations, leading to:

where the leading error term is now of second order, or O (∆x)2. This is known as a central 

difference approximation.

An approximation for the second derivative can be derived by adding the forward and
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backward difference approximations to obtain:

which is also second-order accurate.

The above approximations are based on a uniform discretization Ax. Similar approximations 

can also be developed for non-uniform Ax, but the accuracy in that case will drop by one 

order.

4.2 Finite Difference Solution of 1D Flow Equation

The governing equation in 1D, with u as the basic unknown, and assuming uniform material, 

is:

We assume that the spatial domain extends between 0 < x < L and that the boundary and 

initial conditions are specified as:

These boundary conditions are known as first-type or Dirichlet boundary conditions. The 

solution domain is discretized as shown in Fig. 10, where i,j designate the nodal numbers in 

the spatial and temporal directions, respectively.
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A forward difference approximation to the governing equation is:

The equation involves the 4 nodes shown in Fig. 11, of which one is at the new time level j+1 

while three are at the old time level j. Letting:

the above difference equation can be rearranged to give:

Figure 10: Space-time finite difference gr1D for 1D flow 

problem

Thus a value at a new time level j+1 can be calculated directly in terms of values at the old 

time level j. This is known as an explicit finite difference solution. For stability, the explicit
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solution requires that p<l/2. The solution is second-order accurate in space (for uniform Ax) 

and first-order accurate in time.

Figure 11: Nodal grouping for explicit 
difference solution

Alternatively, using a backward difference approximation for the time derivative, the 

governing equation can be approximated by:

This equation now involves 3 nodes at the new time level j, plus one at the old time level j-1 

(Fig. 12). It can be rearranged to give:

Since there are 3 unknowns at the new time level j, the equation cannot be solved directly. 

By writing the equation at all nodes where u is unknown (this excludes the boundary nodes 

where u is specified), we obtain a set of simultaneous equations which can be solved.

62



Figure 12: Nodal grouping for implicit 
difference solution

For example, for the gr1D shown in Fig. 10, which has 6 nodes in the spatial domain, and 

where the two boundary nodes carry specified values, we obtain 4 equations in 4 unknowns. 

These equations can be written in matrix form as follows:

The right-hand s1De contains the values at the old time level j-1, plus the boundary values. 

The tr1Diagonal matrix equation can thus be solved at each time step using the results of the 

preceding time step. This solution is known as an implicit finite difference solution. The 

solution is second-order accurate in space and first-order accurate in time, and it is stable for 

any choice of At.

In order to achieve second-order accuracy also with respect to the time derivative, we can 

write the left-hand s1De of the finite difference equation as the average between the time levels
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j and j-1. Thus the entire equation in effect represents the best approximation for a point 

located m1Dway (centered) between the two time levels (Fig. 13). The algebraic equation then 

becomes:

where all the unknowns (the values of u at the new time level j) appear on the left-hand s1De 

and all the knowns on the right-hand s1De. The matrix equation is of the same form as that 

for the implicit solution. This is known as a centered finite difference solution, which has 

second-order accuracy in both space and time. It is also unconditionally stable.

Figure 13: Nodal grouping for centered 
difference solution

In the above solutions, the boundary has been specified in terms of the unknown u at the 

boundary (first-type boundary condition). If instead a value of the flux q is specified at the 

boundary we speak of a second-type or Neumann boundary condition. In that case, we can 

equate this flux to the gradient of u at the boundary, using the Darcy equation. At the same 

time, we can approximate the boundary gradient by means of a centered difference 

approximation, using an extra node (0,j) placed outs1De the domain (Fig. 14). We obtain:
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where n refers to the direction normal to the boundary. This yields:

Since the value of u at the boundary is now unknown, we write a difference equation also for 

the boundary node (l,j), and we use the above equation to substitute for the term uoj occurring 

in the difference equation. Using the implicit form, the difference equation for the boundary 

node becomes:

This equation would be added to the equations previously obtained for the implicit solution. 

Thus we have one additional equation and one additional unknown for each boundary node 

where the flux is specified. The above form preserves second-order accuracy in space.

Figure 14: Second-type boundary conditon for 
1D flow problem
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Each of the above three solution types has its advantages and disadvantages. The explicit 

form is the easiest to program, but its stability constraint may require rather short time steps. 

The implicit form overcomes this constraint at the cost of some more elaborate programming. 

The centered form delivers the best accuracy, again at the cost of additional programming. 

In implicit or centered solutions of the flow problem, the length of the time step is arbitrary; 

a shorter time step, however, gives a better resolution of transient behaviour.

Figure 15 shows the transient behaviour of a typical 1D flow system, with u specified at each 

end, and a change imposed at the left end at the initial time. The solution is formulated in 

terms of dimensionless time:

The spatial discretization is Ax=0.05. The exact analytical solution (Carslaw and Jaeger, 

1946) is:

where the first term on the right-hand s1De is the steady-state solution and the summation term 

represents the transient response.
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Figure 15: Transient behaviour of 1D flow system: Analytical 
and numerical solutions

The change imposed consists of setting u/uo=l at x=0. Profiles corresponding to T*=0.001, 

0.01, 0.1, and 1.0 are shown in Fig. 15. The response generated by the imposed change 

gradually penetrates through the system, converging to a linear function at equilibrium. If a 

larger time step were selected, some of the early-time response, characterized by a steep 

gradient at the boundary, will be lost, but the solution will still converge to the correct 

equilibrium condition. It is also possible to go directly to the equilibrium condition in a single 

step by setting the specific storage to zero.

Finite difference solutions for 2D and 3D problems can also be formulated and numerous 

models based on this approach are in existence (eg FLOWPATH and MODFLOW). A case 

study is presented in Appendix 1 to demonstrate how a finite difference model is 

conceptualized, set up and applied to real situation.
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4.3 Cape Cod Study

The case study presented in Appendix 1 was adapted from USGS open file reports 84-475 and 

86-481 (de Lima and Olimpio, 1984 and Ragone, 1986 respectively). The study was 

conducted at Cape Cod, Massachusetts in the United States of America. Treated sewage had 

been discharged through infiltration beds into underlying sand and gravel aquifer since 1936 

at an approximate rate of 0.46 Mgal/day. The contaminant plume that resulted from the 

discharge was estimated to be 11000 ft long, 3000 ft w1De and 75 ft thick. The geology of 

the area consists of glacial deposits that are underlain by crystalline bedrock. The uppermost 

90 to 140 ft consists of stratified sand and gravel which overlies silty sand and till. Average 

hydraulic conductivity of the aquifer materials was determined to be 380 ft/day and the 

average linear groundwater velocity was estimated as 1.5 ft/day. A numerical model was 

developed to prov1De insight to hydraulic processes at the site and predict the response of the 

system to different hydraulic stresses. Appendix 1 presents site characterization in cross 

section and plan view, conceptualization of the problem domain in terms of boundary 

conditions, discretization of the problem domain, and comparison of results of the calibrated 

model with the observed data.

5. FINITE ELEMENTS

5.1 Basic Principles

The main advantage of the finite element method is that domains of irregular geometry can 

be represented naturally. This advantage comes into play with 2D and 3D problems. Thus, 

although finite element solutions can be developed for any dimensionality, we will focus here 

on 2D domains. Regardless of the spatial dimensionality, the time dimension always has the 

same uniformity and is therefore usually handled with finite differences, even when the spatial 

dimensions are handled with finite elements. Comprehensive discussions of the finite element
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method in groundwater hydrology may be found in texts such as Huyakom and Pinder (1983).

In applying the finite element method, we start by div1Ding the domain into a number of 

elements (Fig. 16). Many element shapes are possible; in two dimensions, the most useful 

shape for groundwater problems is the linear triangle. The points where the element comers 

meet are the nodes.

Figure 16: Typical finite element gr1Ds

The first step in the development of the finite element solution is to define an interpolation 

function that expresses the value of the unknown function u=u(x,y) in terms of its values Uj 

at the nodes (Fig. 17). The interpolation is accomplished by means of basis functions. For 

the linear triangle, these basis functions are inclined planes of the form shown in Fig. 18. 

There is one basis function for each of the 3 nodes on the element; each of these basis 

functions has a value of 1 at the node it represents, and a value of 0 at the other two nodes 

that lie on the same element.
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Figure 17: Typical linear 

triangle element

Figure 18: Basis functions for linear triangle

Since the basis functions are linear, the interpolation will be a piecewise linear approximation 

of u. We call the approximate function u=u(x,y). The interpolation that expresses u in terms 

of Uj is:
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where Wj(x,y) represents the basis functions. For the linear triangle, these are surfaces given 

by:

where the coefficients are obtained by cyclic permutation of the nodes i,jjc as follows 

(Zienkiewicz, 1977):

and where the determinant is defined as:

with A being the area of the triangle. A property of the basis functions is that:

everywhere within the element.

The second step in developing the finite element solution is the generation of the algebraic 

equations that will be solved for the unknown nodal values. To generate these equations, we 

use the Weighted Res1Dual Method (Huyakom and Pinder, 1983). Suppose we have a partial
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differential equation of the form:

where L is a differential operator. An exact solution will be obtained if we substitute a trial 

solution in the form of:

where n is the number of nodes in the domain. If we limit the nodes to a finite number, as 

we must, the solution will be approximate and of the form:

u

where u designates an approximation of u. We can substitute the approximate solution into 

the original differential equation to obtain:

where the non-zero res1Dual function R(x,y) on the right-hand s1De is a consequence of the 

approximation.

According to the theory of weighted res1Duals, we can minimize the res1Dual R(x,y) on the 

average over the domain by satisfying a set of weighted res1Dual equations, which are:

where A designates the solution domain, and Wj(x,y) are a set of n weighting functions 

corresponding to the nodes (Fig. 19).
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Figure 19: Linear weighting function

In the general weighted res1Dual method, these weighting functions are independently chosen. 

In the Galerkin Method, on the other hand, which is a special variant of the weighted res1Dual 

method, the weighting functions are chosen to be 1Dentical to the basis functions. This has 

the advantage of simplicity, and a further advantage in that the coefficient matrix for the flow 

equation becomes symmetrical. The Galerkin Method has been well proven in groundwater 

hydrology (Pinder and Frind, 1972) and we will here use it exclusively.

The numerical error in the Galerkin finite element method is minimized globally, that is, over 

the domain as a whole, the error is a minimum. As the number of nodes increases and the 

nodal distances decrease, the error decreases, and, in the limit as the number of nodes tends 

to infinity, the error tends to zero. Locally, the numerical error is of first order for non- 

uniform node spacing and of second order for uniform node spacing.

73



5.2 Finite Element Solution of 2D Flow Equation

The governing equation for flow in a heterogeneous isotropic medium, with the coordinate 

axes oriented along the principal directions of conductivity, is:

where u is the unknown potential. The boundary and initial conditions are of the form:

where Bj and B2 are parts of the boundary with B = B1 + B2 being the complete domain 

boundary, Kn is the effective hydraulic conductivity in the direction of the normal at the 

boundary, and to is the initial time.

To develop the Galerkin finite element solution, we discretize the spatial domain with linear 

triangular elements and assume a trial solution of the form:

Upon substitution of the trial solution into the governing equation, a res1Dual will be obtained 

which is:
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According to weighted res1Dual theory, the res1Dual will be minimized if a set of weighted 

res1Dual equations is satisfied. The weighted res1Dual will be minimized if a set of weighted 

res1Dual equations is satisfied. The weighted res1Dual equations are of the general form:

or specifically, for the case of the 2D flow equation:

The approximate functions u in the above equation are represented within each element by the 

interpolation function:

which expresses u in terms of the unknown nodal values uj

The Galerkin procedure calls for the interpolation function to be substituted into the weighted 

res1Dual equations. We note that, since the interpolation function is expressed in terms of the 

linear basis functions Wj(x,y), evaluation of the second derivatives in the weighted res1Dual 

equations will cause the equations to vanish. To overcome this problem, we first transform 

the second-derivative terms by applying Green’s theorem (Hildebrand, 1965). The result is:
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where 1x, ly are the direction cosines of the inward normal at the boundary, and db is an 

increment of the boundary. The inward rather than the outward normal is chosen in order to 

be consistent with the mass conservation convention which specifies that mass added to the 

system is positive.

We can now substitute the interpolation function for the variable u. The nodal values uj 

contained in the interpolation function, being point values, can be taken outs1De the integral. 

Also, since the basis functions, which must be integrated, are defined indiv1Dually for the 

elements, we can break up the entire integral into elemental contributions which are summed 

over all the elements. Furthermore, the boundary integral in the above equation represents the 

second-type (flux) boundary condition qn=-Kndu/dn, which allows us to replace the term {.} 

by the boundary flux {-qn}. The boundary integral is known as the natural boundary 

condition since it is generated naturally by the weighted res1Dual finite element formulation.

Finally, we let the time derivative be approximated by:
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The weighted res1Dual equations thus become:

where Ae represents the element area, and Be represents the s1De of an element lying on the 

boundary. The above n equations can be written in summation notation as:

or in matrix notation as:

where [MK] is the conductance matrix, [Ms] is the storage matrix, and {FB} is the boundary 

flux vector. The coefficient matrices are now entirely in terms of material parameters and 

geometric terms which express the element geometry through the basis functions. The 

procedure for evaluation of the matrices is to first generate the elemental coefficient matrices 

and then to assemble these into the corresponding global matrices. The elemental matrices 

corresponding to the specialized equations addressed here are given in Sections 5.4, 5.5, and 

5.6.

The time derivative can be approximated by a forward difference approximation of the form:
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where k designates the time level. In order to obtain optimum accuracy and unconditional 

stability, we can place the spatial terms in the equation at a point in time where the time 

derivative approximation has the lowest error. In most cases this is the m1Dpoint between the 

old and the new time levels, or tk + ∆t/2 (centered difference approximation). However, we 

can also choose a general time weighting of the form tk + n∆t, where 0<n<l. The spatial

terms will then be weighted in time according to:

On the basis of a general time weighting, the matrix equation becomes:

where n = 1 gives an implicit-in-time solution and ∆=l/2 gives a centered-in-time solution.

To account for the first-type boundary condition, the matrix equation is partitioned according 

to nodes at which u is unknown and nodes at which u is known. The partitioning is as 

follows:

where M and F stand for the complete coefficient matrix (left-hand s1De) and forcing vector 

(right-hand s1De) of the finite element matrix equation, respectively, and where the subscripts 

f and c designate free nodes (u unknown) and constrained nodes (u specified), respectively.

78



The partitioned equation is multiplied out to give:

Only the first of these two equations is needed for the solution. The second equation is used 

if the fluxes at the first-type boundary are required, for example, in mass balance calculations. 

The second term in the first equation, which represents the link between the first-type 

boundary nodes and the interior nodes of the domain, contains known terms only and is 

moved to the right-hand s1De. The equation to be solved thus becomes:

where the right-hand s1De now contains all known quantities, which include the solution at the 

preceding time step, values at the first-type boundary, and fluxes at the second-type boundary.

The above matrix equation, which is typical for flow problems and purely diffusive problems, 

has symmetric coefficient matrices. The usual method of solution is the Cholesky method, 

which takes advantage of matrix symmetry. For the 1D form, the Thomas method is 

commonly used. For very large systems, the preconditioned conjugate gradient method 

(Schm1D and Braess, 1988) is now becoming increasingly popular.

After solution of the matrix equations, the specific discharge in each element can be calculated 

by substituting the potentials into the Darcy equation (Section 2.1). The elemental 

interpolation function is used to express the potential function in term of the nodal values uj 

produced by the matrix solution. For the case where the coordinate axes coinc1De with the 

principal directions of conductivity, the components of specific discharge in 2D become:
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where bj.Cj are the basis function coefficients. The groundwater velocities are then given by 

Vi=qi/0. Since the basis function coefficients, which result from the differentiation of the 

linear basis function, are constant over each element, the velocity components will be element-­

wise constant, and discontinuous from one element to the next.

Matrix equations similar to the above can be developed for the various specialized equations 

for flow and transport The finite element solutions for the three types of equations given in 

Section 2 are developed below.

5.3 Anisotropy and Heterogeneity

The above development is val1D for isotropic material or anisotropic material with the 

coordinate axis coinc1Ding with the principal directions of anisotropy. For the more general 

case, where the coordinate axes do not coinc1De with the principal directions (Fig. 20), we can 

choose one of two options. The first is to include the cross-derivative terms in the 

development of the solution. The second option is to rotate the coordinate axes into the 

principal directions. The second option is computationally more efficient, since the terms in 

the finite element equation are kept to a minimum. This option should be used where the 

principal directions are invariant, and where the rotation is easily accomplished, as for 

example in 2D flow problems.
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Figure 20: General anisotropic

The rotation is performed on the nodal coordinates on a node-by-node basis, according to (Fig. 

21):

where x', y' are the coordinates of point x,y in the principal direction coordinate system, and 

P is the angle between the cartesian axes and the principal axes. The finite element 

formulation permits each element to have its own indiv1Dual angle of rotation. This is a 

significant advantage for cross-sectional systems with complex stratification.

The calculated potentials, being scalar quantities, are independent of the rotation. However, 

the velocities, being vector quantities, must be rotated back to cartesian coordinates if the 

velocity calculation was done in rotated coordinates (see preceding section). The back rotation
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is:

Figure 21: Rotation of axes

The problem of anisotropy also arises in the solution of the transport equation (Section 5.6). 

In this case, the principal directions are the directions parallel and perpendicular to the flow. 

Unfortunately, these directions are in general not invariant, since they depend on the flow 

boundary conditions. The standard procedure in transport modelling is, therefore, to use 

cartesian coordinates and to include the cross-derivative terms. One conceptual dilemma in 

this approach is that the cross derivative terms in the dispersion tensor (Dxy' Dyx)  are usually 

defined according to the classical approach, which is now recognized to be val1D only at the 

local scale. Lacking practical alternatives, however, most models also apply the classical 

definition to the field scale. This is defensible on the basis that the dominant direction of 

contaminant migration in most aquifers is horizontal.

In situations where depth-dependent chemical or biochemical reactions occur, the vertical 

positioning of the plume may be of importance. In such cases, the cartesian form may not
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give sufficient accuracy in the solution of the transport equation. This problem can be 

overcome by solving the transport equation in principal coordinates (see for example Frind 

et al., 1990). The finite element gr1D for the transport solution is, in that case, defined by the 

flownet (see Section 4.5), which is generated by the solution of the potential and 

streamfunction equations. In this approach, the flow velocities are not needed in the solution 

of the transport equation, since the advective displacement is defined by the streamfunction 

solution.

The finite element formulation also accommodates material heterogeneity in a unique way. 

Heterogeneity is reflected in the governing equations in that the material properties, i.e. Kij and 

Dij, are functions of space and are therefore included as part of the argument of the differential 

operator. This would normally result in terms of the form dKij/dXj or dDij/dx (see Section 5.3). 

These terms, however, do not appear in the finite element equation. This is due to the 

transformation of the differential terms by Green’s Theorem, resulting in a boundary integral 

term and an area integral term in which the material property is no longer an argument of the 

differential operator. The boundary integral term vanishes in the interior of the gr1D because 

the fluxes crossing the inter-element boundaries cancel each other. The end result of this is 

that the finite element equations are fully val1D for heterogeneous systems without derivatives 

of the material property functions.

5.4 Confined/Unconfined Aquifer Equations

The governing equations for flow in confined or unconfined aquifers are given in Section 2.3. 

The basic assumptions are that flow in the aquifer is predominantly horizontal, and that the 

aquifer is separated from neighbouring flow systems by aquitards whose permeability is 

substantially lower than that of the aquifer. A confined aquifer receives recharge mainly by 

leakage through the aquitards from above or below, while an unconfined aquifer receives 

recharge through infiltration from above. In addition, both can be recharged at the lateral 

boundaries, or by injection.
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We assume that the coordinate axes coinc1De with the principal directions of transmissivity. 

Since the flow solution is fairly insensitive with respect to the time derivative approximation, 

we use backward differences in time. The finite element equation for both confined and 

unconfined aquifers then takes the form:

where k is the time level, [MK] is the conductance matrix, [ML] represents the leakage flux, 

[Ms] is the storage matrix, and {FR}, {FB}, {FQ} represent the areal recharge flux, the 

boundary recharge flux, and the source/sink recharge flux, respectively.

For a gr1D consisting of linear triangular elements, the elemental components of the above 

matrices are defined as follows:
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where bj; Cj are the basis function coefficients, A is the element area, K'1, K'2, b'1, b'2 represent 

the hydraulic conductivity and thickness of the upper and lower aquitards, respectively; h1, h2 

are the heads in the adjoining aquifers that contribute leakage flux; qR is the recharge at the 

watertable; qn is the influx at the lateral (second-type) boundaries, and Le is the length of the 

elements at the boundary. The source/sink vector {FQ} contains simply the well recharge or 

discharge at the appropriate node, with recharge being positive and discharge being negative.

In the case of a confined aquifer, the solution is linear and proceeds in a time-marching 

manner, starting with the specified initial condition. The unconfined aquifer solution, on the 

other hand, is nonlinear on account of the parameter T=Kb, in which the saturated thickness 

b=h-B is a function of the unknown watertable head h. The solution is therefore iterative. 

The iterative procedure consists of substituting the calculated heads back into the equation and 

resolving the system. The iteration usually converges rap1Dly, prov1Ded the change in the 

saturated thickness is small relative to the thickness itself. If the change during a time step 

is large, or if dewatering is imminent, numerical problems can occur. The usual remedy is 

to reduce the time step. Special techniques must be incorporated if dewatering occurs.

A groundwater system consisting of several aquifers separated by aquitards can be represented 

by coupling areal models together. A multi-aquifer model of this type has been developed by 

Rudolph and Sudicky (1990).
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5.5 Potential/Streamfunction Equations

The governing equations in a cross-sectional flow system in terms of potentials and 

streamfunctions are given in Section 2.4. The basic assumption is that flow is entirely within 

the plane of the section. Since the flow system is taken to be at steady state, the equations 

have no storage term. However, changes in the flow system in time, for example due to 

changing recharge, can be accommodated by means of successive instantaneous steady states. 

Although this approach neglects the storage mechanism of the system, the equilibrium solution 

is fully val1D.

We will assume that the coordinate axes coinc1De with the principal directions of hydraulic 

conductivity. The finite element equations for the potentials and streamfunctions are:

For a gr1D consisting of linear triangles, the coefficient matrices are:
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where Le is the length of the element on the boundary, and -∆  = i-i+1is the head change 

over the element having nodes i and i+1 on the boundary (Fig. 23). Upon assembly, the nodal

values ' express the equivalent nodal recharge at the second-type potential boundary, which 

is the boundary flux multiplied by one-half the element length on either s1De of node i (Fig.

22). Likewise, the assembled nodal values 1 express one-half the negative head difference 

between the neighbouring nodes on either s1De of node i, or (i-1 -  i+1)/2 (Fig. 23).

Figure 22: Second-type boundary

condition for potential
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condition for streamfunctions

Figure 23: Section-type boundary

First-type boundary conditions on either   or Ѱ are accounted for in the finite element 

equations by partitioning the equations and moving the linking terms to the right-hand s1De. 

Thus the final coefficient matrix will contain only terms corresponding to nodes where the 

basic variable is unknown.

The potential/streamfunction equations can also be solved for the case where the position of 

the watertable (the upper boundary of the gr1D) is unknown. The boundary condition on   

will in that case be defined in terms of the recharge flux at the watertable. The condition to 

be satisfied is that at the watertable, the hydraulic head must equal the elevation head:

since the pressure component of the hydraulic head is taken to be relative to atmospheric 

pressure. The solution procedure for the nonlinear case starts with an assumed watertable 

position. The calculated head at the watertable is then compared with the elevation head, and 

the watertable is adjusted (up or down) accordingly. The solution is repeated until
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convergence is obtained. The iterations usually converge rap1Dly, prov1Ded the aquifer near 

the watertable contains no major discontinuities.

After solution of the matrix equations for potentials and streamfunctions, the velocities can 

be calculated either from the potentials (see Section 4.2) or from the streamfunctions (see 

Section 2.4). In the latter case, we can make use of the fact that the interval in the values of 

the streamfunctions that bound a streamtube equals the discharge in the streamtube. 

Therefore, the groundwater velocity in the direction of a streamline is given by:

where ∆Ѱ is the streamfunction interval, and Ap is the w1Dth of the corresponding streamtube. 

Since both the streamfunction and the streamtube w1Dth are continuous functions, the velocity 

calculated by the above procedure will be continuous between elements.

Figure 24 shows a typical finite element gr1D for a cross-sectional flow system. The boundary 

condition at the watertable is a uniform recharge of 15 cm/year, the left and bottom 

boundaries are impermeable, and the right boundary is an outflow boundary. The material is 

isotropic. The simulation starts with an initially rectangular gr1D, and the watertable is 

iteratively adjusted until a gradient that is consistent with the given recharge is obtained.

The flownet produced by the potential/streamfunction model is shown in Fig. 25 (note the 

vertical scale exaggeration). In (a), a uniform hydraulic conductivity of 10-6 m/sec is used, 

while in (b), the same system is modified by placement of a lens of lO-4 m/sec in the m1Ddle 

of the flow system. The high-conductive lens is seen to be highly effective in focusing the 

flowlines. In addition, it also reduces the watertable gradient above the lens, as well as the 

total watertable rise, which is 2.2 m for case (a) and 1.7 m for case (b).
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Figure 24: Finite element gr1D for cross-sectional flow system

5.6 Transport Equation

The governing equation for advective-dispersive transport with linear sorption and first-order 

decay is given in Section 2.5. The equation is val1D in one, two, and three dimensions. The 

velocity field required for solution of the transport equation can be determined either by 

application of the general Darcy equation to the flow solution (see Sections 2.1 and 4.2), or 

by direct use of a streamfunction solution (see Section 4.5 above). The former approach is 

val1D for both cartesian and principal coordinates, while the latter approach is used only when 

the transport equation is formulated in principal coordinates.

With either approach, the velocities will be element-wise constant and therefore discontinuous 

between elements. In the finite element solution of the transport equation,
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Figure 25: Flownet for cross-sectional flow system: (a) uniform material, K=10-6 

m/sec, (b) same material, except lens of K=10-4 m/sec at center of system

this discontinuity is acceptable since the elemental parameters are integrated over the elements 

and the error due to the discontinuity is thereby minimized. In other approaches for the
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solution of the transport equation, such as particle tracking, the discontinuity in the velocity 

field may not be acceptable.

We will here focus on two spatial dimensions and we will base the finite element solution on 

a general cartesian formulation which does not require coinc1Dence between the coordinate 

axes and the principal directions. Since the numerical solution of the transport equation is 

sensitive with respect to time weighting, we use a general time-weighted approximation. In 

the absence of other information, however, a centred time weighting scheme usually gives the 

best accuracy in transport simulations. The finite element equation is:

where n is the time weighting factor. The coefficient matrix [M] is made up of contributions 

as follows:

where the matrices making up [M] are the dispersion, advection, decay, and boundary 

matrices, respectively, [MT] is the mass storage matrix, and {FB} is the mass flux boundary 

term. Both [MB] and {FB} arise from the third-type boundary condition. The elemental 

contributions to the above matrices, for linear triangles in a 2D domain, are as follows:

where Dij are the components of the dispersion tensor, Vi are the velocity components, R is the
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retardation coefficient, q0 is the recharge flux, c0 is the solute concentration in the recharge 

flux, Le is the length of the element s1De on the boundary, and 1x, ly are the direction cosines 

of the inward normal at the boundary.

The above form of the mass storage matrix [MT] is known as the consistent form because the 

finite element interpolation is applied consistently to each term of the governing equation 

including the time derivative term. As an alternative, the lumped form can be obtained by 

adding the terms in each row of [MT] and placing the value on the diagonal. In each case, 

the sum of all the matrix terms must equal the total volume of the element. The consistent 

form gives slightly better accuracy in most applications, while the lumped form gives better 

convergence in some highly nonlinear problems.
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A further contribution to the matrix equation is derived from the free exit boundary condition 

(Frind, 1988) which should be used whenever a contaminant plume reaches a domain 

boundary. This boundary condition does not require any known boundary values. The 

incorporation of the free exit boundary effectively moves the downstream boundary to infinity.

In contrast to the flow equation, the transport equation leads to an unsymmetric finite element 

matrix equation on account of the advective component. Standard transport models, therefore, 

use mostly the Gauss technique for the solution of the matrix equations. Alternatively, a 

special technique (Leismann and Frind, 1989) can be applied to make the transport matrix 

symmetrical; this facilitates solution by a highly efficient symmetrical conjugate gradient 

technique (Schm1D and Braess, 1988).

The numerical solution of the transport equation proceeds in a stepwise manner starting with 

the given initial condition. If the flow system is at steady state, the flow solution is executed 

only once; if the flow system is transient, the flow solution must be coupled to the transport 

solution and executed at each time step.

Various nonlinearities can occur in the solution of the transport equation. For example, in the 

case of biological decay where the process depends on the availability of the reactants, the 

decay coefficient will be a function of the concentration of the various constituents. The 

mobile constituents will be represented by indiv1Dual transport equations, while the immobile 

ones will be represented by appropriate mass balance relationships. During each time step, 

the solution procedure will iterate over all the transport equations while adjusting the decay 

coefficients until convergence occurs.
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5.7 Numerical Dispersion and Numerical Constraints

Numerical dispersion is a term used to describe the numerical error that can arise in the 

solution of the transport equation. Its main cause is the presence of the advective term in the 

equation. Numerical dispersion can take the form of a smeared concentration profile, or it can 

cause oscillations of the profile resulting in negative concentrations or concentrations 

exceeding the source concentration.

In nonreactive transport, a moderate amount of numerical dispersion may be acceptable. In 

reactive transport, however, reactions taking place at some point in the aquifer depend on the 

concentration of the indiv1Dual reactants at that point. Numerical inaccuracies can have 

profound effects on the results, as well as on the overall val1Dity of the simulation. The 

control of numerical dispersion is therefore particularly vital in the simulation of reactive 

transport. Constraints on the numerical parameters that control numerical dispersion have 

been developed (Daus et a l, 1985).

Numerical dispersion is controlled by three factors: the spatial discretization, the time step, 

and the choice of the time weighting. The spatial discretization is constrained by the gr1D 

Peclet number criterion which is:

where |v| = |q |/ө is the magnitude of the velocity vector, |D| is the effective dispersion 

coefficient in the direction of the velocity vector, and AL is the length of the element in the 

direction of flow. Letting |D| = a L|v|, the above relationship yields the constraint:
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which controls the gr1D spacing in the flow direction.

In practical situations, the requirement Pe < 2 cannot be easily satisfied everywhere. 

Fortunately, the solution is quite robust so that the occasional element exceeding the constraint 

(up to, say, Pe < 4) will rarely cause difficulties. The Peclet criterion should, however, be 

satisfied on the average over the gr1D as a whole. In the direction transverse to the flow 

vector, the gr1D spacing is usually gu1Ded by the source configuration and by the expected 

transverse spreading behaviour, that is, a small transverse gr1D spacing should be chosen when 

the transverse dispersivity is small.

The time step is constrained by the gr1D Courant criterion, which is:

Letting Pe = 2, the time step At becomes:

which physically means that a particle migrating at velocity |v| must not travel farther during 

one time step than the length of one element. This constraint should be satisfied for each 

element in the gr1D.

With respect to time weighting, the Taylor series expansion reveals that a centred scheme 

gives a higher accuracy (second-order) than either an explicit or an implicit scheme. 

Weighting more toward the implicit s1De will generally tend to dampen any oscillations that 

may be present, at the expense of additional smearing. Since this additional smearing has the 

appearance of physical dispersion due to a larger dispersivity, the results may be misleading 

and the use of implicit time weighting in solving the transport equation is therefore not
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recommended. Overall, it has been found that reliable accuracy with essentially no numerical 

dispersion is obtained with a centred time weighting scheme and with the spatial and temporal 

discretization chosen in accordance with the gr1D Peclet and Courant constraints.

A further constraint on the time step arises on account of the mass loss due to decay (Luckner 

and Schestakow, 1986). This constraint is:

which expresses the fact that the mass lost from any one element during a time step cannot 

be greater than the mass present in the element at the beginning of the time step. Exceeding 

this constraint will lead to negative concentrations, which, in the case of reactive systems, 

would cause the process to break down. Therefore this constraint must be rigorously 

observed.

Some of the numerical characteristics discussed above are illustrated in Figures 26, 27, and 

28, which depict the solution of the 1D advection-dispersion equation under various 

conditions. The physical parameters are v=0.167 m/day and a=1.0 m. The boundary 

condition at the left is either of the First type with c/co=1.0 or the third type with qoCo/ ө=0.167 

m/day. The analytical solution for the first-type boundary condition, also known as the Ogata- 

Banks solution (Bear, 1979) is:
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analytical

Figure 26: 1D advection-dispersion solution, numerical vs.
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analytical

Figure 27: 1D advection-dispersion solution, numerical vs.
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Figure 28: 1D advection-dispersion solution, numerical vs.

analytical
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where the complementary error function erfc{.} is defined as:

The first term in the above solution gives the symmetric advection-dispersion profile, while 

the second term gives the effect of the first-type boundary which becomes smaller with 

increasing distance from the boundary.

The corresponding solution for the third-type boundary condition (Bear, 1979) is:

Figure 26 is a comparison of the two types of boundary conditions. With the first-type 

boundary, the solution starts immediately at c/c0=1.0, while with the third-type boundary, it 

starts at c/co=0 and gradually builds up to c/c0=1.0. As a result, the mass input is greater 

during the early time period for the first-type boundary case, which has a constant mass input. 

Also the point where c/c0=0.5 coinc1Des with the point x=vt in the third-type boundary case, 

but is slightly ahead in the first-type boundary case. The two profiles approach each other 

with increasing time. Since the recommended spatial and temporal discretization is used and 

the time weighting is centred, the numerical solution closely agrees with the analytical solution
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in both cases.

Figure 27 shows the effect of exceeding the discretization constraints. In Figure 27a, the gr1D 

spacing is four times the recommended value according to the Peclet constraint, the result is 

significant overshoot and smearing of the profile. In Figure 27b, the time step exceeds the 

value recommended by the Courant constraint by a factor of four; this also generates fairly 

large oscillations.

In Fig. 28a, an implicit (backward) time-weighting is used instead of a centred time weighting. 

This causes a marked smearing of the profile (compare with Fig. 26a). Figure 28b shows the 

effect of using a lumped mass storage matrix; the accuracy obtained with this formulation is 

comparable to that obtained with the consistent mass matrix (compare again with Fig. 26a).

5.8 Case Studies

There are numerous studies where models that are based on finite element methods have been 

used to predict groundwater flow and movement of contaminants in aquifers. The case study 

presented in Appendix 2 (Ophori and Farvolden, 1985) describes how a numerical model was 

used to evaluate the use of a hydraulic trap for preventing collector well contamination in the 

Forwell aquifer, Ontario, Canada. The source of contamination was described as an oil 

reclamation plant which operated over a period of approximately two decades. Contamination 

from the lagoons used for sludge waste disposal migrated through the aquifer, contaminating 

an estimated volume of 30,000 m3 of groundwater.

The study describes extensive literature search and detailed pumping and recovery tests to 

characterize the aquifer. Hydraulic parameters obtained during the literature search and field 

tests were used as input into the numerical model developed to simulate groundwater flow 

near steady state field conditions. Triangular finite elements were used in the study, with finer 

mesh in the vicinity of the pumping wells. The model was calibrated by adjusting inferred
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boundaries until the water levels predicted by the model were similar to observed data. The 

calibrated model was then used to determine the effect of a hydraulic trap in the form of a 

purge well which was intended to prov1De protection against contamination from the collector 

well.

Another study is presented in Appendix 3 where finite elements method was used to 

investigate a concept that would ordinarily be difficult to demonstrate. A 1D saturated- 

unsaturated flow model was applied to the transient drainage of water through a two-layer 

vertical column of porous media. The objective was to demonstrate the hydraulic principles 

involved in the use of fine-grained materials as protective covers for reactive mine tailings. 

The objective of installing the covers is to keep the materials at high moisture content thereby 

reducing the influx of oxygen into the reactive tailings. In the study prov1Ded in Appendix 

3, emphasis was placed on the choice of materials which have appropriate physical properties 

to achieve the set objectives because of the dependence of observed response of the two- 

layer system on the retention characteristics of the component materials. The study further 

demonstrates how models could be used for the purpose of system design.

6. PARTICLE TRACKING METHODS

Particle tracking methods offer a valuable alternative to finite difference and finite element 

methods for simulating contaminant transport. In particle tracking, the distribution of a solute 

in the groundwater is represented by a finite number of particles, where each particle carried 

either a certain concentration or a certain fraction of the total mass. The particles are moved 

through the domain according to the velocity field, and their behaviour is observed. The 

status of the system at a given time can be deduced from the distribution of the particles. The 

accuracy and smoothness of the solution will depend on the number of particles used.

One of the main advantages of particle tracking is that the Peclet constraint on the gr1D 

spacing does not apply and that the type of numerical dispersion that is controlled by this
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constraint does not occur. The method is therefore well-suited for advection-dominated 

problems, where the Peclet constraint would dictate a very fine spacial discretization if finite 

difference or finite element methods were applied. Freedom from the Peclet constraint, 

however, does not mean that the spatial discretization can be indiscriminately large since the 

accuracy of the final solution still depends on the gr1D resolution.

Before solving the transport equation by either finite differences, finite elements, or particle 

tracking, the velocity field must first be determined. This is usually accomplished by 

numerically differentiating the hydraulic heads obtained from the numerical solution of the 

flow equation. A major difference between finite elements and particle tracking lies in the 

manner in which the flow velocities are used in the transport calculations: In finite elements, 

velocities are used in an integrated form, while in particle tracking, they are used directly for 

advecting the particles. For this reason, element-wise discontinuous velocities are not 

acceptable in particle tracking. Sophisticated interpolation procedures are therefore used in 

order to obtain a continuous velocity field (Kinzelbach, 1986). The relative ease of 

implementation of these interpolation procedures when using rectangular gr1Ds leads to a 

preference for finite difference methods for the calculation of the heads in most particle 

tracking schemes.

A disadvantage of particle tracking is that nonlinear chemical or biochemical processes are 

not easily incorporated. The optimal use of particle tracking methods is thus in hydraulically- 

oriented situations, such as pump-and-treat remediation measures for groundwater 

contamination, or the delineation of groundwater protection zones. In purging situations, the 

key question to be addressed often concerns the optimal strategy for the hydraulic removal of 

a contaminant plume from the aquifer. Dispersion is of secondary importance in such cases.

6.1 The Method of Characteristics

One of the most popular transport codes today is the Method of Characteristics (MOC) code 

developed by Konikow and Bredehoeft (1978). To understand the method, the transport
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process can be conveniently visualized by cons1Dering a single particle. The particle is carried 

along by the moving water and it experiences dispersion, sorption, and decay along the way. 

These processes are all linear and they can therefore be cons1Dered separately and 

superimposed. The particle is cons1Dered to be representative of some control volume and it 

is accordingly tagged with an initial concentration equivalent to the average concentration of 

that control volume. The particle moves along pathlines (the characteristic curves) in the 

velocity field (Fig. 29).

Figure 29: Pathline in 2D flow field

In two dimensions, the rate of change of concentration in the moving particle is given by the 

substantial derivative:

where the first term on the right-hand s1De represents the changes experienced by the moving 

particle and the remaining terms represent the changes due to the motion of the particle. The 

characteristic equations are:
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and

where vx,vy represent the velocity components. The above equations are known as the 

incompressible form of the Euler equations. In the absence of sources or sinks and no 

dispersion or decay, we have:

so that:

Therefore, the concentration of the moving particle will remain the same in the non-dispersive 

and non-reactive case. The displacement of the particle up to time t is expressed exactly by 

integrating along the pathline equation:

where X0, y0, t0 are the starting point and time, and r is the integration variable. In the 

numerical solution, the finite displacement during the time interval from t to t+At is
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determined by performing an equivalent but approximate numerical integration (Fig. 30):

Since the velocity at the starting point is used here, the calculation represents an explicit 

(upstream) approximation, which is first-order accurate. Alternatively, center-weighted 

procedures can be used that iteratively calculate the advective displacement in terms of the 

average of the velocities at the old and new positions, giving second-order accuracy.

Figure 30: Advective displacement of a particle

The processes of dispersion, decay, and retardation can be cons1Dered separately in the MOC. 

If dispersion were to occur in addition to advection, the term expressing the change of 

concentration of the moving particle (see substantial derivative equation) will become:
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which is the pure-dispersion equation for the moving particle.

Since dispersion is a process that redistributes mass, the solution of the above equation 

requires cons1Deration of all particles together. The solution is analogous to the procedure 

discussed in Section 3.2. For example, for a uniformly-spaced gr1D where the coordinate axes 

coinc1De with the principal directions of the dispersion tensor, the explicit calculation will 

yield a dispersive change over the time step At at particle location i,j (Fig. 31) given by:

where the right-hand s1De is entirely in terms of the concentrations at the old time level. A 

more general procedure val1D for an arbitrary coordinate orientation and variable coefficients, 

which requires 9 nodal points for the calculation of ∆cij, is discussed by Kinzelbach (1986). 

In order to obtain the regular gr1D pattern required for the dispersive calculation, the particles 

must be reassigned (with suitable concentration adjustments) to the cell centers prior to the 

dispersive calculation.
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Figure 31: Particle pattern for explicit 

calculation of dispersive transport component

The above explicit calculation is subject to the stability constraint:

Alternatively, an implicit solution procedure can be used which avo1Ds the stability constraint. 

Konikow and Bredehoeft (1978) use the explicit procedure.

Decay is a process that operates on each particle indiv1Dually. The change experienced by the 

moving particle is in that case given by:
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and the finite change Ac over the time step At is accordingly:

The change calculated for each particle is added to the existing particle concentration.

Linear sorption can be incorporated easily by div1Ding the velocity v and the dispersion 

coefficient D by the retardation coefficient (R), which is given by:

The effect of this process will be a slowing down of the advective advance and the spreading.

Observance of the gr1D Courant constraint is necessary in all particle tracking procedures in 

order to limit particle migration to no more than one cell length per time step. If this 

constraint were exceeded, particles would literally jump across intervening cells, and the 

information res1Dent in those cells would remain unused. This constraint is independent of 

the stability constraint that applies to the explicit solution of the dispersive transport 

component Although a formal constraint on the gr1D spacing, analogous to the Peclet 

constraint does not exist in particle tracking methods, the gr1D spacing nevertheless controls 

the resolution of the velocity field, and hence the accuracy of the simulation. Therefore, a 

reasonably fine cell spacing should be used in areas of large gradient changes. If dispersion 

is included, particles must be distributed throughout the domain, including areas that initially 

have zero concentration, to allow for the spreading of the plume.
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6.2 Capture Zones and Plume Purging

The travel time T of a particle along its pathline can be computed easily by accumulating the 

time steps:

By releasing particles along a contaminant front and recording their position at specified time 

levels, the advective advance of a front can be displayed at different times.

A useful concept in groundwater protection is the capture zone of a well, which is defined as 

the zone within which all water is eventually captured by the well. A capture zone can be 

generated by starting a number of particles around the periphery of the well and tracking them 

in the reverse flow direction. The capture zone is time-dependent and it will continue to 

expand until the withdrawal at the well is balanced by recharge from the surface, from 

neighbouring aquifers, or from the boundaries. If the well is a water supply well, the capture 

zone will define the zone that is sensitive to contamination and that may be designated as a 

groundwater protection zone. Figure 32 shows typical time-related capture zones associated 

with a single pumping well in a uniform flow field for 3 different points in time.
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Figure 32: Pathlines and capture zones in a uniform flow field

The capture zone concept is also useful in the context of hydraulic purging of groundwater 

contamination. If the extent of contamination is known, the purge well can be placed in such
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a way that its capture zone encompasses the plume. The purging operation can then be 

simulated by tracking the particles representing the boundary of the capture zone back to the 

well. Questions such as the optimal location of the purge well or wells, and the time required 

for plume removal, are usually of prime interest in the planning of the operation.

In the case of plume purging, the plume will be in a condition of maximal dispersal prior to 

purging. The additional dispersion occurring during the purge operation is therefore of little 

interest and the dispersive transport component can be justifiably neglected. Linear 

adsorption/desorption as well as first-order decay may be of interest and can be included. 

Overall, however, the most important transport component in such situations is the advective 

component. The MOC, in its advective mode, is therefore well suited for handling such 

situations.

One aspect that may play a role in plume purging is the fact that contaminant mass can be 

retained in low-conductivity zones within a heterogeneous aquifer. Thus a significant portion 

of the mass may still be in the aquifer even though the hydraulic remediation would indicate 

complete removal of the plume. This is known as the dual porosity phenomenon, which, 

unfortunately, is not easily incorporated into the MOC.

6.3 The Random Walk Method

The Random Walk Method (Prickett et al., 1981) differs from the MOC in that each particle 

represents a fixed mass, so that the sum of all particle masses equals the total mass in the 

system. Particles are displaced advectively and dispersively. For simplicity, we will here 

cons1Der a 1D system. In this case, the advective-dispersive displacement of a particle with 

respect to its initial position is given by (Fig. 33):
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where p - N(0,1) is a normally-distributed random variable with mean = 0 and standard 

deviation = 1, and where D = av. The random variable p is obtained from a random number 

generator.

The time stepping scheme for the 1D problem therefore becomes:

Figure 33: Advective-dispersive displacement in Random Walk 

Method

This is again an explicit procedure having first-order accuracy. The corresponding 2D 

formulation is similar.
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A problem arises here (Kinzelbach, 1986) in that the advective-dispersive displacement

calculated by the above equation represents a solution not to the advection-dispersion equation:

but to the slightly different equation:

In order to amend this discrepancy, a correction is added to the velocity term giving:

The correction dD/dx is applied whenever the dispersion coefficient D=av varies on account 

of either a variable velocity or a variable dispersivity or both. The corrected velocity v* is 

used in the calculation of the advective displacement.

A scale-dependent dispersivity can be incorporated in the random walk method by utilizing 

some suitable function that would take on the value of the local dispersivity at the source, and 

that would increase asymptotically to the field value over a travel distance of about 40 to 50 

correlation lengths of the statistically homogeneous medium. Linear sorption and first-order 

decay can also be incorporated in the same way as in the MOC.

The number of particles required in the Random Walk Method is controlled primarily by the 

requirement to have a sufficient number of particles left in low-concentration zones (the 

fringes of the plume) for the calculation of concentrations. Thus the anticipated dispersion, 

retardation, and decay mechanisms must be cons1Dered when selecting particle populations.
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8. GLOSSARY

Adsorption. The assimilation of flu1D (gas, vapour, or dissolved matter) by the surface of a 

sol1D.

Advection. The process by which solutes are transported by the bulk motion of the flowing 

groundwater.

Air Stripping. A process of mass transfer by which a substance in groundwater is transferred 

to solution in a gas, usually air.

Alluvium. A general term used for clay, silt, sand, gravel, or other unconsol1Dated material 

deposited during comparatively recent geologic time by a stream or other body of running 

water as a sorted or semisorted sediment in the bed of the stream or on its floodplain or delta, 

or as a cone or fan at the base of a mountain slope.

Anisotropic. Having some physical property (eg hydraulic conductivity) that varies with 

direction of measurement.

Aquiclude. A saturated geologic unit that does not transmit water freely to a well or spring 

under ordinary hydraulic gradients.

Aquifer. A saturated geologic unit that can transmit economical quantities of groundwater 

to wells and springs under ordinary hydraulic gradients.

Aquifer Test. A test involving the withdrawal of measured quantities of water from or 

addition of water to a well and the measurement of resulting changes in head in the aquifer 

both during and after the period of discharge or addition.
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Aquitard. A geologic unit through which virtually no groundwater moves.

Bedrock. A general term used for the rock, usually sol1D, that underlies soil or other 

unconsol1Dated material.

Capillary Fringe. The saturated zone at the bottom of the vadose zone where groundwater 

exists under negative pressure, having been drawn upward by capillary force.

Coefficient of Permeability. See Hydraulic Conductivity.

Coefficient of Storage. The volume of water an aquifer releases from or takes into storage 

per unit surface area of the aquifer per unit change in hydraulic head.

Coefficient of Transmissivity. See Transmissivity.

Cone of Depression. A depression in the groundwater table or potentiometric surface that 

develops around a well from which water is being withdrawn.

Confined Aquifer. A saturated geologic unit in which the groundwater is isolated from the 

atmosphere at the point of discharge by impermeable geologic formations and generally 

contains groundwater that exists at a pressure greater than atmospheric.

Contamination. The degradation of natural water quality as a result of human activities. 

There is no implication of any specific limits, since the degree of permissible contamination 

depends upon the intended end use, or uses, of the water.

Darcy’s Law. A derived equation for the flow of flu1Ds relating volumetric flu1D flux to 

hydraulic gradients. It is based on the assumption that the flow is laminar and that inertia can 

be neglected.
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Dispersion. The spreading and mixing of chemical constituents in groundwater caused by 

diffusion and mechanical mixing due to microscopic variations in velocities within and 

between pores.

Drawdown. The distance between the static water level and the surface of the cone of 

depression.

Effluent. A waste liqu1D discharge from a manufacturing or treatment process, in its natural 

state or partially or completely treated, that discharges into the environment.

Equipotential Line. A line along which the pressure head of groundwater in an aquifer is 

the same. Flu1D flow is perpendicular to these lines in the direction of decreasing hydraulic 

head.

Evapotranspiration. Loss of water from a land area through transpiration of plants and 

evaporation from the soil.

Flow Lines. Lines indicating the direction followed by groundwater toward points of 

discharge. Flow lines are perpendicular to equipotential lines.

Groundwater Table. The surface where pressure head is zero in a saturated geologic unit. 

It is approximated by the top surface of an unconfined aquifer.

Head. Energy contained in a water mass, produced by elevation, pressure, or velocity.

Head Loss. That part of head energy which is lost because of friction as water flows.

Heterogeneous. Nonuniform in structure or composition throughout.
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Homogeneous. Uniform in structure or composition throughout

Hydraulic Conductivity. The rate of flow of a unit volume of groundwater through a unit 

cross sectional area and under a unit hydraulic gradient, at the prevailing temperature.

Hydraulic Gradient. The rate of change in hydraulic head per unit change of distance of 

groundwater flow measured along a given direction.

Hydraulic Head. Energy per unit weight of groundwater, produced by elevation and pressure.

Hydrogeologic. Those factors that deal with subsurface waters and related geologic aspects 

of surface waters.

Intrinsic Permeability. See Permeability.

Isotropic. Having physical properties that are the same in all directions.

Laminar Flow. Water flow in which the stream lines remain distinct and in which the flow 

direction at every point remains unchanged with time. It is characteristic of the natural 

movement of groundwater.

Landfill. A general term indicating a location where refuse, dirt from excavations, household 

garbage, etc. are disposed.

Leachate. The liqu1D that has percolated through sol1D waste and dissolved soluble 

components.

Limestone. A sedimentary rock consisting mainly of calcium carbonate which exists 

primarily in the form of the mineral calcite.
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Molecular Diffusion. Dispersion of a chemical caused by the kinetic activity of the ionic or 

molecular constituents.

Observation Well. A well drilled in a selected location for the purpose of observing 

parameters such as water levels and pressure changes.

Overburden. The loose soil, silt, sand, gravel, or other unconsol1Dated material overlying 

bedrock, either transported or formed in place.

Partial Penetration. When the intake portion of the well is less than the full thickness of the 

aquifer.

Perched Water. Unconfined groundwater separated from an underlying main body of 

groundwater by an unsaturated zone.

Percolate. The act of water seeping or filtering through the soil without a definite channel.

Permeability. The property or capacity of a porous rock, sediment, or soil for transmitting 

a flu1D; it is a measure of the relative ease of flu1D flow under unequal pressure.

Pollution. A term used when the contamination concentration levels restrict the potential use 

of groundwater.

Porosity. The percentage of the bulk volume of a rock or soil that is occupied by interstices, 

whether isolated or connected.

Potentiometric Surface. An imaginary surface representing the hydraulic head of 

groundwater in a confined aquifer that is defined by the level to which water will rise in a 

well that is installed in the aquifer.
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Pumping Test. A test involving water level measurements as groundwater is withdrawn from 

a well. It is conducted to determine aquifer or well characteristics.

Recharge. The process of adding water to the zone of saturation or the amount of water thus 

added.

Specific Yield. The volume of water an unconfined aquifer releases from storage per unit 

surface area of the aquifer per unit decline of watertable.

Static Water Level. The level of water in a well that is not being affected by withdrawal of 

groundwater.

Storage Coefficient. See Coefficient of Storage.

Storativity. See Coefficient of Storage.

Till. Predominantly unsorted and unstratified drift, generally unconsol1Dated, deposited 

directly by and underneath a glacier without subsequent reworking by meltwater, and 

consisting of a heterogeneous mixture of clay, silt, sand, gravel, and boulders ranging w1Dely 

in size and shape.

Tortuosity. A term used to describe the sinuosity of the actual flow path in a porous 

medium. It is evaluated as the ratio of the length of the flow path to the length of the sample.

Transmissibility. See Transmissivity.

Transmissivity. The rate at which groundwater is transmitted through a unit w1Dth of an 

aquifer under a unit hydraulic gradient.
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Transpiration. The process by which water absorbed by plants, usually through the roots, 

is evaporated into the atmosphere from the plant surface.

Turbulent Flow. Water flow in which the flow lines are confused and heterogeneously 

mixed.

Unconfined Aquifer. An aquifer where the water table is exposed to the atmosphere through 

openings in the overlying materials.

Vadose Zone. The zone containing water under pressure less than that of the atmosphere. 

This zone is limited above by the ground surface and below by the water table.

Viscosity. The property of a substance to offer internal resistance to flow. Specifically, the 

ratio of the shear stress to the rate of shear strain.

Water Table. The surface (ie. surface of zero pressure head) at which the pressure is equal 

to that of the atmosphere.
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APPENDIX 1

NUMERICAL SIMULATION OF GROUNDWATER FLOW 

AT A SUPERFUND SITE:

CAPE COD STUDY
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Cape Cod Study1

Background

• site studied as part USGS program

• treated sewage through infiltration beds to
aquifer since 1936 - 0.46 Mgal/d

• plume 11,000 ft long, 3000 ft w1De and 75 ft thick

• chlor1De, detergents, boron, and 100 organic
compounds (e.g., trichloroethene, tetrachloroethene 
dichlorobenzene)

Objectives in Modeling

• early stage - to understand processes and predict
system response

• our use - to understand how models set up and applied

1Adapted from USGS Open-File Rep. 84-475; 86-481
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Geology

• glacial deposits overlying crystalline bedrock

• uppermost 90-140 ft stratified sand and gravel overlies 
silty sand and till

Hydrogeology

• hydraulic conductivity - 380 ft/d

• estimated, average groundwater velocity 1.5 ft/d
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Plume Geometry
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Critical Steps in Developing a Model

• processes involved?

• equations to describe these processes?

• region shape -
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Flow Model

• discretization and boundary conditions

• parameter values - preliminary estimates from field data 
and guesses refined in calibration
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Observed and Computed Water Table
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APPENDIX 2

HYDRAULIC TRAP FOR PREVENTING

COLLECTOR WELL CONTAMINATION:

FORWELL CASE STUDY

Reprinted by kind permission of 
Ground Water

Copyright 1985. All rights reserved.
(Ref: Ground Water, v. 23(5), pp. 600-610, 1985)
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A Hydraulic Trap for Preventing Collector Well 
Contamination: A Case Study

by Duke U. Ophoria and Robert N. Farvoldenb

ABSTRACT
A hydraulic trap in the form of a purge well is 

proposed for the Forwell collector well K-71. The trap, 
which will protect well K-71 from contamination by 
contaminants migrating downgradient from the old 
Breslube waste disposal site, is based on a qualitative flow 
net obtained from a finite-element model of the Forwell 
Aquifer. The trap constitutes pumping at the position of 
observation well OW 9-80 at a continuous rate of at least 
6.1 X 10-3 m3/s. The uniqueness of the trap lies in its 
simplicity and relatively low cost.

INTRODUCTION
The Forwell induced infiltration well field 

supplies about 6,818.4 m3/day of water to the 
cities of Kitchener-Waterloo, Ontario, something 
less than 10% of the total demand. On the basis of 
recommendations by the Grand River Induced 
Infiltration Committee (GRIIC) reports (1976 and 
1977), several developmental processes have been 
undertaken to improve production by two “30.48- 
meter” horizontal collectors (K-70 and K-71) 
presently inducing infiltration from the Grand 
River. Also, canals have been dug around each 
collector to enhance infiltration and stabilize the 
cone of influence. The waste disposal site of the 
old Breslube petroleum refinery plant, which lies 
to the east of the well field, is a potential threat to 
the quality of water pumped from the collectors.

aDepartment of Geology, University of Alberta, 
Edmonton, Alberta T6G 2E3, Canada (on study leave from 
Department of Geology, University of Port Harcourt,
Port Harcourt, Nigeria).

bInstitute for Groundwater Research, Department of 
Earth Sciences, University of Waterloo, Waterloo, Ontario 
N2L 2G1, Canada.

Received October 1984, revised January 1985, 
accepted April 1985.

Discussion open until March 1, 1986.

The waste disposal site is located at the 
highest topographic elevations in the area. The 
water level in the Forwell Aquifer is also highest 
around the disposal site, and slopes toward the 
collectors and the Grand River. Under these condi­
tions, contaminants which escape into the aquifer 
from the disposal site could be expected to migrate 
toward the collectors and the Grand River under 
natural ground-water flow. Furthermore, the rate 
of contaminant migration might be enhanced by 
production from the collectors.

The topography of the Forwell site and the 
water-level configuration of the Forwell Aquifer 
are shown in a stratigraphic cross section of the site 
in a later section.

Drawdown cones of influence associated with 
induced infiltration well fields are commonly 
stabilized by infiltration from nearby rivers after 
long continued pumping. In the highly permeable 
river-connected Forwell Aquifer, stabilization was 
rap1Dly approached and in conjunction with a 
digital model of the aquifer has been advantageous­
ly employed in the design of the hydraulic trap in 
this study.

SITE DESCRIPTION
Location

The site is located about 4,828 m east of 
Kitchener, Ontario, Canada, approximately 2,414 
m south of the Highway 7 br1Dge over the Grand 
River near Breslau and about 1,609 m southeast of 
the br1Dge (Figure 1). It is accessible by a laneway 
from regional road 17 at a point about 805 m 
south of the railway tracks in Breslau.

Geology
Chapman and Putnam (1966) described the 

Waterloo Hills physiographic region of which the 
Forwell site is part, and Karrow (1968, 1971, 
1974) has done cons1Derable detailed work in this 
area since then. Figure 2 shows the surficial glacial
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Fig. 1. Location map.

Fig. 2. Surficial geology

and postglacial deposits in the vicinity of the site. 
The surface is composed of sandy till r1Dges and 
hills of kames or kame moraines with outwash sand 
occupying the intervening hollows. The site itself 
lies in a major outwash channel in which the 
modern Grand River flows. The outwash deposits 
are predominantly uniform sand and gravel, 
occasionally silty. In the study area, the Grand 
River has an average gradient of 0.0013 (Karrow, 
1968). The relatively low-gradient, broad-sweeping 
meanders and extensive floodplains indicate that 
the river is quite mature at the site. The glacial 
drift which varies in thickness from 9.1 to 24.4 m 
in the floodplains and up to 91.4 m in the uplands, 
consists of various interbedded till units, glacio- 
lacustrine deposits and outwash deposits (Karrow, 
1961; 1968; 1971). Numerous and extensive coarse 
gravel and sand deposits occur along the Grand 
River spillway. At present, the Grand River appears 
to be depositing gravelly materials along many of 
its meanders (Baechler, 1974).

The study site is underlain by gently dipping 
Silurian sedimentary rocks. Thus, bedrock consists 
of the Salina and Guelph Formations, comprising 
mainly dolomite and limestone. In addition, the 
Salina Formation contains interbedded shales and 
some gypsum as secondary fillings in pores (Hewitt 
and Freeman, 1972). The relationship between the 
various deposits at the Forwell site is illustrated in 
Figure 2a. The position of this geologic cross 
section is shown in Figure 3.

Hydrogeology
Genera/

The hydrogeology of the site is based mainly 
on a number of domestic water wells and test wells 
installed by International Water Supply Ltd. (IWS) 
between 1948 and the present, reports by Golder 
Associates Ltd. (GA) and Hydrology Consultants 
Ltd. (HC), and the GRIIC.

As a result of sand and gravel mining opera­
tions, the surface of the site is hummocky. Several 
deep pits contain ponded water at varying eleva­
tions which ev1Dently infiltrates to deeper zones. 
South of the site, a creek draining the glacial till 
upland to the east of the site runs into the Grand 
River. The influent nature of the creek is caused by 
the hydraulic gradient resulting from the lower 
hydraulic head in the aquifer than that of the 
surficial water (GA, 1976). This influent stream 
which infiltrated 53,019.9 m3/day of water into 
the lower aquifer in the past (GA, 1976), is 
presently contained downstream along its course.

In general, four basic stratigraphic units have
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Fig. 2a. Stratigraphic cross section of the Forwell site.

Fig. 3. Outcrop map of hydrostratigraphic units and 
installations for October 1981 pumping test.

been 1Dentified in the study area: (1) upper 
aquifer, (2) intermediate confining layer, (3) lower 
aquifer, (4) bedrock. Their surficial outcrop rela-­
tionships are illustrated in Figure 3.

Upper Aquifer
The Upper Aquifer which occurs in the 

eastern portion of the site has been removed by 
erosion from some portions where it existed origi-­
nally. The aquifer varies from silty sand in the west 
to clean sand and gravel in the east, with up to
3.1 m of saturated thickness under both confined 
and unconfined conditions due to perching caused 
by the underlying semiconfining beds. Based on 
soil description, hydraulic conductivity varies from
1.2 X 10-5 m/s for the silty sand up to 4.0 X 10-4 
m/s for the clean sand and gravel near the Breslube 
disposal lagoons (IWS, 1980). The general direction 
of movement of water in this zone is toward the 
Grand River and the unit does not form a major 
ground-water zone (GA, 1976).

Intermediate Confining Layer
But for a strip on the eastern margin of the 

Grand River and a narrow zone extending from the 
river northeastwards, the intermediate confining 
layer occurs throughout the site. Locally, it attains 
a thickness of up to 13.7 m. This till layer has a 
higher silt and sand content in the eastern half of 
the site than the central portion and some layers of 
lacustrine clay occur locally. Utilizing grain-size 
distribution curves and the Hazen approximations, 
permeabilities of the confining layer range from 
10'10 to 6 X 10-5 m/s (GA, 1976). High infiltration 
rates through the confining layer are a result of the 
relatively large hydraulic gradient across the layer, 
especially where the permeability is relatively high.

Consequently, the confining beds are capable 
of transmitting all of the precipitation that reaches 
them (GA, 1976).

Lower Aquifer
The bouldery and stony nature of the lower 

aquifer has limited most of the boreholes to 
relatively shallow penetration of the aquifer. Of 
the ten boreholes completed to the bedrock at the 
Forwell site and the adjacent Pompei site on the 
west s1De of the Grand River, only one borehole 
(TW 2-75) reportedly encountered glacial till 
between the lower aquifer and the bedrock, 
indicating that the lower till is local. Using 
ev1Dence from the borehole data and the bedrock 
topography map of Miller et al. (1979), an average 
thickness of 15.3 m was estimated for the lower

143



aquifer. The aquifer materials have been variously 
described by different workers. A general 
consensus is that the aquifer consists mainly of 
sand and gravel, everywhere silty and bouldery. 
Occasionally, the materials are clayey (IWS, 1979), 
cemented (IWS, 1966) or clean (IWS, 1966; GA, 
1976; GRIIC, 1976). Data on available samples 
agree with this description. The silty sand and 
gravels are moderately permeable at about 10-6 
m/s while cleaner sections have permeabilities of 
10-4 m/s (GA, 1976).

The lower aquifer is the major water-bearing 
unit at the Forwell site and the one referred to as 
the Forwell Aquifer in this study. In the absence of 
pumping, ground-water movement in the aquifer is 
toward the Grand River. Aquifer conditions vary 
from confined artesian in the east to unconfined 
water table near the Grand River (IWS, 1980). This 
aquifer is hydraulically connected to the Grand 
River (GRIIC, 1976).

Bedrock
The map by Miller et al. (1979) shows the 

topography of the westward gently-sloping 
bedrock surface. The bedrock consists of dolomite 
and shale of the Silurian Salina Formation which, 
over most parts of this location, underlies the 
lower aquifer. The Salina Formation is known to 
contain very hard and sulphate-laden water. The 
direction of ground-water movement is likely 
similar to that in the lower aquifer (GA, 1976).

METHOD OF STUDY
The study was carried out in four stages. The 

first stage involved an extensive literature review of 
earlier reports on the Forwell site and its imme­
diate confines. All available data relating to the site 
were assembled and examined. These data included 
results of previous test drilling and geophysical 
surveys along the Grand River carried out by IWS, 
borehole data from the exploratory drilling 
program by the GRIIC, and data from other 
studies. Chemical and water-level data since 1979 
were also supplied by the Regional Municipality of 
Waterloo. Results of two pumping tests by 
previous investigators were evaluated. The first test 
was conducted by the GRIIC in 1975. A test well 
located near the present K-71 was pumped for 119 
hours at a constant rate of 1.4 X 10-2 m3/s. A total 
of six observation wells situated at various distances 
from the test well and river were monitored. In the 
second pumping test of July 1976, the same test 
well was pumped for 460 hours at the rate of
1.7 X 10-2 m3/s and 11 observation wells were

monitored. The Thiem steady-state method of 
analysis defined an average transmissivity of 
2.9 X 10'3 m2/s for the Forwell Aquifer. Gevaert 
(1979) reported a storativity value of 0.08, radius 
of influence of 213 m; distance from pumped well 
to effective recharge boundary of 106 m, percentage 
of water diverted from the river as 77 and an infil­
tration rate of 4.9 X 10"7 m/s at the site. Further 
details of the pumping test analyses may be 
obtained from GRIIC (1976) and Gevaert (1979).
A careful study of the observation well hydro­
graphs for both tests reveals that near-steady-state 
conditions were obtained at the site after two days 
of pumping.

As part of this study, additional data from 
more test holes and piezometers were necessary to 
define the cone of influence adequately, at the 
second stage. A total of six water-table piezometers 
were installed with a truck-mounted CME 55 drill 
rig, using both sol1D- and hollow-stem augers. These 
piezometers were restricted to the area around 
K-71 as it was hoped that definition of the cone of 
influence of pumping of K-71 would be sufficient 
to yield the desired results. All installations for the 
October 1981 pumping test are shown in Figure 3.

To prov1De a response in the aquifer that can 
be attributed to a specific pumping rate, well K-71 
pumping at a rate of 2.8 X 10-2 m3/s was shut 
down and allowed to recover from October 14-17, 
1981. The recovery data for two observation wells, 
like those of the earlier pumping tests, suggest that 
near-steady-state conditions are approached after 
about two days (Ophori, 1982). The recovery test 
was followed by a three-day pumping test during 
which well K-71 was pumped at a constant rate of
1.7 X 10-2 m3/s. This rate was cons1Dered high 
enough to produce the necessary response in the 
system as well as to facilitate comparison between 
earlier and present results in the area around K-71. 
Ten observation wells were monitored and 
measurements were taken before and after the 
pumping test in 15 other wells from October 17-20, 
1981 (Figure 3). Typical observation well hydro­
graphs (Figure 4) show that most of the drawdown 
occurred in the first ten hours; thereafter, draw­
down was slow but continuous. At about 45 hours, 
drawdown became negligible with time but water 
levels were influenced by a rise in river stage 
approximately six hours later. It is obvious that 
near-steady-state conditions were approached after 
48 hours of pumping.

In Figure 5, the water-table configuration 
after 48 hours of pumping in October 1981 is 
compared with that of August 1981. The August

144



Fig. 4. Hydrographs of typical observation wells.

Fig. 5. Comparison of August and October 1981 steady- 
state water levels.

configuration was prepared from water-level data 
supplied by the Regional Municipality of Waterloo 
after one month of continuous pumping at the 
normal average production rate of 2.8 X 10-2 m3/s. 
Within the cone of influence, there is a 0.3 m rise 
in ground-water levels from August to October. A 
careful observation reveals that this 0.3 m differ­
ence is closely related to river-stage fluctuation 
from August to October 1981. This favorable 
comparison of water levels is a further ev1Dence 
that near-equilibrium conditions prevailed at the 
end of the pumping test, and predictions based on 
this test would be val1D with little or no error. An 
attempt to analyze the recovery data by the Theis 
recovery method as described by Kruseman and 
de Ridder (1970) yielded transmissivity values 
much higher than expected for the aquifer. None­
theless, the recovery test gave a useful gu1De to 
expected drawdown and pumping period necessary 
to establish near-steady-state conditions. A knowl­
edge of this limiting period was important in order 
to avo1D errors in interruption that might be 
misleading in setting up the normal pumping 
schedule at this site. A reliable set of data for 
transient conditions was difficult due to complex 
boundary conditions. The Thiem steady-state 
method as outlined in Kruseman and de R1Dder 
(1970) was used to evaluate the aquifer trans­
missivity. The method is val1D for an aquifer 
system with a recharge boundary, prov1Ded 
piezometers cons1Dered are in a line parallel and 
not too close to the recharge boundary (Walton 
and Ackroyd, 1966). An average transmissivity 
value of 3.0 X 10-3 m2/s was calculated by this 
method. A second transmissivity value of
3.7 X 10"3 m2/s was estimated for the aquifer, using 
the method of Rorabaugh (1956). These trans­
missivity values fall within the range of transmis­
sivities reported by GRIIC (1976) and Gevaert 
(1979). Detailed explanation of these methods and 
further analysis of the data is presented in Ophori 
(1982).

At the third stage, the hydrologic and 
hydraulic parameters obtained from the earlier 
stages of the study were incorporated in the 
development of a model to simulate the actual 
ground-water flow when near-steady-state condi­
tions prevailed. Boundaries were inferred and 
adjusted to obtain realistic results.

Finally, at the fourth stage, the model was 
used to determine the effect of a hydraulic trap in 
the form of a purge well which would prov1De 
protection against contamination from the 
Breslube site.
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MODEL DESCRIPTION AND CALIBRATION
The general partial differential equation that 

approximately governs the flow of water in a two- 
dimensional isotropic aquifer is

where
T is the transmissivity of the aquifer, L2T_1; 
h is the hydraulic head in the aquifer, L;
S is the storage coefficient of the aquifer,

dimensionless;
Q is the flux of a source or sink, L3T-1; 
x and y are the space coordinates, L;

K is the vertical hydraulic conductivity of a
confining layer, LT-1;

b is the thickness of a confining layer, L; and 

ha is the hydraulic head in the adjacent aquifer, L.

The mathematical model used to approximate (1) 
was that from the Pinder and Frind (1972) finite- 
element solution of the differential equation for 
transient flow in plan view. This solution used the 
Galerkin procedure to generate the approximating 
integral equations and evaluated them with iso-­
parametric quadrilateral elements by numerical 
integration. For a complete explanation of this 
method, the reader is referred to the paper by 
Pinder and Frind (1972). Although the method 
assumes a confined aquifer, it can be applied to an 
unconfined aquifer in which drawdown is small in 
comparison to the saturated thickness (Muskat, 
1937; Kazmann, 1946; Lohman, 1972). Moreover, 
the Forwell Aquifer exhibits both confined and 
unconfined conditions (IWS, 1980).

In the present study, the domain was approxi­
mated by finite triangular elements which requires 
a modification of the original program of Pinder 
and Frind (1972). The gr1D had 110 nodes and 191 
elements with a maximum bandw1Dth of 23. Small 
triangular elements were used near the pumping 
well, and the size increased with distance 
(Figure 6).

The image-well theory was incorporated into 
the model to simplify the complex boundary 
conditions imposed on the system by the Grand 
River and canal around K-71. Furthermore, it was 
hoped that the theory would reduce the computing 
cost of developing the model by eliminating the
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Fig. 7. Drawdown cone at the end of October 1981 
pumping test.

Fig. 6. Finite-element gr1D.

number of runs that would be required to obtain 
reliable flux into the system at the river and canal 
nodes. Figure 7 shows the observed drawdown 
cone at the end of the pumping test. But for the 
immediate vicinity of the pumping well, the cone 
is highly asymmetrical and resembles that expected 
for a single recharge boundary on the river s1De of 
the pumping well. Consequently, the entire



Fig. 8. Simulated steady>state flow net.

channel system was approximated by a single 
recharge boundary which was replaced by a line 
source and finally by image wells as suggested in 
Rorabaugh (1956). To simulate the long horizontal 
screen, the collector well (K-71) was modeled by 
three real wells equally spaced and each pumping 
at one-third the test pumping rate of K-71 
(1.7 X 10‘2 m3/s). Three equivalent recharging 
“image wells” were placed at a distance “a” 
beyond the line source. This approach is a simpli­
fied form of those described by Ferris (1959), 
Walton and Walker (1961), Walton and Schaefer 
(1956), and Walton (1970).

To further simplify the problem, the system 
was started as hydrostatic and the water-level 
datum was chosen to be zero.

As data were insufficient to describe the areal 
extent of the aquifer rigorously, the north bound­
ary of the model was fixed by the ground-water 
div1De which separates the flow fields of K-70 and 
K-71. This div1De was confirmed by field measure­
ments of ground-water levels due to pumping of 
each of K-70 and K-71. The other boundaries were 
located far enough from the pumping center so 
that no-flux conditions could be assumed. The 
west boundary was adjusted to accommodate the

image wells at a distance “2a” from the real wells 
with which they produce the effect of the line 
source m1Dway between them. The lower calcu­
lated transmissivity of 3.0 X 10'3 m2/s seemed more 
reliable, and together with a storativity value of
0.08 adapted from Gevaert (1979), were used in 
the model.

The model was calibrated with the a1D of the 
information above and a computer program which 
solves equation (1). An attempt was made to simu­
late the observed near-steady-state drawdown cone 
and hence head distribution in the aquifer. This 
procedure is based on the assumption that a par­
ticular head distribution is the result of a unique 
set of aquifer boundaries and properties.

Several runs were processed varying the posi­
tions of the image wells. In each case, the transient 
model described earlier was run till near-steady- 
state conditions prevailed—that is, after long- 
continued pumping. Best results were simulated 
with the image wells at a distance “2a” of 304 m 
from the real wells. The resulting near-steady-state 
flow net (Figure 8) compares favorably with the 
observed flow net (Figure 9) indicating that the 
model closely describes the hydrogeologic condi-

Fig. 9. Observed steady-state flow net.

147



tions at the Forwell site. The slight variation in the
290.5 m isopotential line may be caused by local 
variation in the aquifer parameters. An approxi­
mate distance of 152 m to effective recharge 
boundary is inferred by these results. This value 
is in agreement with those calculated earlier at the 
site (Gevaert, 1979; Ophori, 1982). As a similar 
interpretation seems feasible for K-70, it is con­
cluded that for the pumping rates cons1Dered in 
this study, the Forwell Aquifer behaves as though 
it has boundaries beyond the cone of influence of 
pumping on one s1De and has a perfect recharge 
line source on the other s1De, 152 m west of K-71.

POLLUTION HAZARDS
The Breslube oil reclamation plant (Figure 1) 

which operated from the early 1960’s until the late 
1970’s used lagoons to dispose of the oily ac1D 
sludge waste and waste water high in phenols 
derived from reclamation processes. Some test pits 
were excavated through contaminated silty sand 
fill, silt, and sand and gravel saturated up to 3.1 m 
with a black oily substance (International Water 
Consultants (IWC), 1980; GA, 1976).

The contamination from the lagoon has 
migrated into the upper aquifer, grossly contami­
nating an estimated 40,470 m2, representing about 
27,276 to 36,368 m3 of contaminated water (IWC, 
1980). Water from this layer is typically odorous 
and grey when initially discharged and contains 
phenol concentrations from 7,000 to 22,000 ppb 
along with other parameters in the well character­
ization group (IWC, 1980). Heavy metals were 
either not detected or were present in low concen­
tration, suggesting that they are held in the soil 
close to the lagoon.

Phenol concentrations of up to 11,000 ppb 
and 8,000 p.pb have been measured in ponds and 
streams recharged by the lagoons and which then 
drain to the Grand River downstream from K-71 
(Figure 9a). Analyses by the Regional Municipality 
of Waterloo over several years show that the level 
of phenols in observation wells fluctuates w1Dely 
with highest values associated with low-flow condi­
tions. High-phenol concentrations measured in the 
aquifer water below the intermediate confining 
layer at OW 6-79 (IWC, 1980) indicate that con­
taminants have passed through this layer in less 
than 20 years. The transit time is significantly less 
than would be expected if the overall permeability 
of the confining layer was as determined in the 
laboratory (IWC, 1980), suggesting that the layer 
has higher in-situ permeability including secondary 
permeability.

Fig. 9a. Distribution of contaminants.

Contamination is less in the lower aquifer, 
and consists of soluble compounds with a 
maximum concentration of 90 ppb. Three centers 
of relatively high-contaminant concentration have 
been located (IWC, 1980).

1. At OW 6-7 9 immediately west of the 
lagoon. It was estimated that it would take about
2.5 years to flow from the area of the lagoons to 
the collectors;

2. Between the lagoons and the collector wells 
and centered on OW 13-79 with estimated migra­
tion time to the collectors of 1.5 years; and

3. Near K-71 and the stream resulting from 
creek leakage especially where the intermediate 
confining layer is absent. There is already a low 
level of phenol present in the area of K-71, at least 
in the upper portion of the aquifer.

Following these results, three corrective 
measures for the lower and eight for the upper 
aquifers were suggested by IWC (1980). The 
suggested measures for the lower aquifer include: 
(a) the containment of the creek, which conveys 
contaminated water from the pond to the Grand 
River, in a corrugated metal pipe; (b) installation 
of a purge well or wells northwest of OW 9-80,
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Table 1. Chemical Data of July, August, and September 1981 (ppm) (Supplied by Reg. Mun. of Waterloo)

LOCA­
TION

DATE HARD­
NESS

ALKAL­
INITY

IRON CHLO­
R1DE

PH CONDUC­
TIVITY

SULP­
HATE

PHENOLS
(ppb)

1-67 J u l y  20 224 213 31 57 8.4 539 48 <1
5-76 J u l y  20 396 830 66 19 7.3 730 87 <1
8-76 J u l y  20 324 610 78 4 7.4 550 39 <1
1-79 J u l y  20 384 293 35 34 7.3 760 102 <1
3-79 J u l y  20 404 712 138 26 7.7 750 112 <1
4-79 J u l y  20 364 503 60 20 7.6 619 77 <1
6-79 J u ly  20 700 2060 165 106 7.2 2100 480 2
8-79 J u l y  20 360 1550 325 7 7.5 541 92 <1

10-79 J u l y  20 258 317 13 1 1 7.3 520 42 <1
11-79 J u l y  20 280 1400 270 6 7.4 520 29 <1
13-79 J u l y  20 392 266 34 23 7.3 750 150 <1

1-80 J u l y  20 404 464 120 5 7.3 650 35 <1
2-80 J u l y  20 336 306 29 17 7.3 620 59 <1
9-80 J u l y  20 352 994 53 2 7.4 621 32 <1
K-70 J u l y  14 272 216 <. 01 22 7.6 530 57 <1
K-71 J u l y  14 332 246 <.01 24 7.5 650 76 <1
1-67 Aug. 12 232 189 17 27 7.3 490 40 <1
5-76 Aug. 12 444 615 34 26 7. 1 750 84 <1
8-76 Aug. 12 344 485 27 5 7.4 570 40 <1
1-79 Aug. 12 392 280 39 36 7.3 760 1 14 <1
3-79 Au g . 12 432 344 49 21 7.3 800 120 <1
4-79 Aug. 12 396 296 16 24 7.3 720 78 <1
6-79 Aug. 12 920 1 190 103 108 7.2 2050 490 <1
8-79 Aug. 12 336 1650 244 30 7.5 570 120 1

10-79 Aug. 12 328 41 1 20 14 7. 1 580 55 1
11-79 Aug. 12 324 634 101 7 7.5 500 45 2
13-79 Aug. 12 408 241 12 24 7.4 740 130 <1

1-80 Aug. 12 392 355 48 4 7.2 630 28 <1

2-80 Aug. 12 352 260 13 18 7.3 500 52 <1
9-80 Aug. 12 408 579 46 2 7.3 630 29 <1
K-70 Aug. 12 — — - - — — <1
K-71 Aug. 12 — — — — <1
1-67 Sep. 16 214 192 20 25 8 .0 485 40 1
5-76 Sep. 16 358 548 39 - - 69 1
8-76 Sep. 16 328 437 20 5 8 .0 620 40 <1
1-79 Sep. 16 354 954 231 35 7.7 810 125 1
3-79 Sep. 16 4 10 354 87 26 7.7 790 125 1
4-79 Sep. 16 376 304 24 25 7.6 760 86 <1
6-79 Sep. 16 460 1 130 1 16 1 1 1 7.2 2250 495 7
8-79 Sep. 16 278 840 194 7 7.4 600 103 1

10-79 Sep. 16 256 340 14 12 7. 1 600 42 2
1 1-79 Sep. 16 260 1280 90 12 7.5 560 42 2
13-79 Sep. 16 364 238 1 1 22 8. 1 770 145 <1

1-80 Sep. 16 362 352 88 4 7.6 640 31 <1
2-80 Sep. 16 356 293 6 19 7.6 620 56 3
9-80 Sep. 16 288 440 23 2 7.8 580 34 <1
K-70 Sep. 16 268 210 .02 22 8.3 530 49 <1
K-71 Sep. 16 304 237 < .01 23 7.8 600 65 < 1

southwest of OW 13-79, and possibly east of K-71 
with yields of about 3.8 X 10-3 m3/s; and (c) the 
possibility of intercepting ground-water flow from 
the east by means of deepened recharge canals 
around the collectors. Option (a) has been success­
fully implemented, (c) has been attempted and 
found not feasible for reasons outlined in IWC 
(1980), and (b) is discussed in the following 
paragraphs.

Table 1 shows chemical data for July, August, 
and September 1981 of the Forwell site, supplied 
by the Regional Municipality of Waterloo. These 
data indicate phenol concentrations below 1 ppb 
around OW 13-79, suggesting that this area has not

continuously survived as a potential contaminant 
source to the collectors. Generally, phenol concen­
trations are within treatable limits in the short 
term, and induced water at collector wells falls 
within the Ministry of Environment’s permissible 
criteria for public drinking-water supplies. Present 
data also indicate that substantial phenol concen­
trations have not arrived at the collectors as 
expected from the times of arrival estimated by 
IWC (1980). This may be due to attenuation as 
well as early implementation of some of the 
corrective measures suggested by IWC (1980). 
Furthermore, the cone of influence of K-71 
(Figure 7) is restricted and does not significantly
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affect the contaminated centers. This would mean 
that contaminant migration from the centers is 
controlled by the naturally slow ground-water 
movement.

In the long term, however, as seepage from 
the upper aquifer through the intermediate con­
fining layer advances, arrival of high-phenol con­
centrations at the collectors is anticipated 
especially from the lagoon area (around OW 6-79). 
The need for a protective measure is therefore 
apparent.

THE HYDRAULIC TRAP
On the basis of the anticipated pollution, a 

hydraulic trap is designed in the form of a purge 
well at OW 9-80. The trap employs the principles 
of flow net construction (Walton, 1970; Freeze 
and Cherry, 1979). The trap location was chosen 
for the following reasons: (1) recommendation by 
IWC (1980); (2) flowlines from the contaminated 
ponds around OW 6-79 pass through this zone to 
the collectors (Figure 9); (3) the authors observed 
that discharged water from OW 9-80 was odorous 
and grey during a sampling session by staff of the 
Regional Municipality of Waterloo, signifying some 
level of contamination at this point. The trap could 
be located east of OW 9-80, but any contaminants 
already downgradient would be free from the trap 
and could be expected to reach K-71 eventually.

To complete the trap design, pumping in the 
aquifer model described earlier was replaced by 
three real wells at the collector, each pumping at 
one-third the normal rate of operation at K-71.
The equivalent “image wells” were placed at 304 m 
to the west as earlier suggested by the model. The 
model was then run several times with varying dis­
charge rates at OW 9-80. Starting with a discharge 
rate of 7.6 X 10-4 m3/s and increasing in steps of
7.6 X 10-4 m3/s, a limiting rate of 6.1 X 10-3 m3/s 
was found to produce the drawdown cone nec­
essary to divert all flowlines from the center of 
contamination into a sink (Figure 10). This waste 
water may be discharged into the Grand River 
downstream from K-71. Should the need arise, a 
lower capacity purge well may be sited northeast 
of OW 1-80 and west of OW 13-79. At least one 
more observation well is needed in this area for this 
design. Since the influent lower reach of the creek 
is presently contained by engineering works, the 
proposed trap at OW 9-80 would be sufficient to 
the south of the site. In terms of efficiency, cost, 
and practicability, this corrective measure is con­
s1Dered the most suitable of all the measures 
proposed by IWC (1980).

SUMMARY
The ground-water system in the vicinity of 

the old Breslube disposal site, which lies to the east 
of the Forwell collector-well K-71 was simulated 
using a two-dimensional finite-element model. The 
model was calibrated with the a1D of a near-steady- 
state drawdown cone which resulted from a field 
pumping test. In order to simplify the problem 
significantly, and to obtain realistic results simul­
taneously, the image-well theory was incorporated 
into the model.

The calibrated model showed that the Forwell 
Aquifer behaves as though it has boundaries 
beyond the cone of influence of pumping on one 
s1De and has a perfect recharge line source on the 
other s1De, 152m west of K-71.

The predictive simulation which followed 
indicated that a pumping well in the position of 
OW 9-80 with a constant discharge rate of at least 
6.1 X 10-3 m3/s, would divert all of the water 
moving from the contamination source for onward 
discharge to the Grand River downstream from 
K-71.

As the proposed trap would be operated on

Fig. 10. Flow net with hydraulic trap.
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purely physical rather than chemical principles, it 
is viewed as a relatively simple and inexpensive, yet 
important, tool to protect the Forwell collector 
well from contamination.
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Ac1D generation in reactive mine tailings is an ox1Dation process that is dependent on availability of molecular oxygen. 
As a consequence of the diffusion coefficient of oxygen being several orders of magnitude higher in air than in water, 
influx of atmospheric oxygen into a material at depth can theoretically be minimized by maintaining a protective cover 
layer at high moisture content. Such oxygen-limiting covers are generally of finer texture than the material being pro-­
tected. A numerical model was used to investigate the importance of moisture-retention characteristics in the transient 
drainage of such two-layer systems. The results show that the effectiveness of a material as a moisture-retaining cover 
is dependent on the magnitude of its air-entry value. The thickness of the cover maintained at full saturation after 
prolonged drainage also depends on the pressure head at which the underlying material approaches res1Dual saturation.

Key words: geologic covers, tailings, numerical simulations, air-entry value, residual saturation, textural layering.

La generation d'acide dans les résidus miniers réactifs résulte d'un processus d’oxydation qui est dépendant de la 
disponibilité d'oxygène. Comme conséquence du fait que le coefficient de diffusion de l'oxygène est plusieurs ordres 
de grandeur plus Sieve dans fair que dans I'eau, l’influx d’oxygène atmosphérique dans un matériau en profondeur 
peut etre minimisé théoriquement en maintenant une couche protectrice de recouvrement à forte teneur en eau. De 
tels recouvrements limitant l'influx d'oxygéne sont généralement d’une texture plus fine que le matériau á protéger. 
Un modèle numérique a été utilisé pour étudier l’importance des caractéristiques de rétention d’eau sur le drainage 
transitoire de tels systèmes bicouches. Les résultats démontrent que Tefficacité d'un matériau comme recouvrement 
hydrophile dépend de l'amplitude de la valeur d’entrée d'air. L'épaisseur d'un recouvrement qui reste complèment 
saturé après un drainage prolongé dépend également de la charge de pression à laquelle le matériau sous-jacent s'approche 
de la saturation rSs1Duelle.

Mots clés : recouvrements géologiques, résidus miniers, simulations numériques, valeur d’entrée d'air, saturation 
rSs1Duelle, couches de différentes textures.

[Traduit par la rédaction]

Can. Geotcch. J. 28, 446-451 (1991)

Introduction
Nicholson et al. (1989) discussed the hydraulic principles 

involved in the use of fine-textured materials as protective 
covers for reactive mine tailings. Using schematics and 
assuming static flow conditions, they demonstrated how 
fine-textured materials could remain at high moisture con­
tent above relatively coarser granular materials, even when 
the water table is at some arbitrary depth, far from the 
ground surface. The authors concluded that such a layered 
system would effectively reduce the influx of oxygen, thereby 
inhibiting ox1Dation of the underlying sulph1De-bearing tail­
ings. They showed that a necessary requirement to maintain­
ing a cover material in a fully saturated state after prolonged 
drainage is that the magnitude of the air-entry value (AEV) 
be greater than or equal to the sum of the cover thickness 
and the magnitude of the pressure head at which the underly­
ing coarse layer approaches the res1Dual moisture content. 
Although the authors suggested that the base of the fine 
cover layer represents a “drip surface,” it is shown here to 
be a limiting condition.

Nicholson et al. (1989) recognized that under conditions 
of static equilibrium, the cover layer would indeed drain. 
It was the contention of the authors, however, that as the

‘Present address: Beak Consultants Ltd., 14 Abacus Road, 
Brampton, Ont., Canada L6T 5B7.
Primed in Canada / Imprint au Canada

underlying coarse material drained such that the res1Dual 
moisture content was approached, the hydraulic conductivity 
would become so small that further drainage would be 
exceedingly slow. As a result, the pressure head in the coarse 
material would be essentially constant and at a value corre­
sponding to the res1Dual moisture content. Though far from 
hydraulic equilibrium, for practical purposes and over time 
scales corresponding to the interval between rainfall events, 
the flow system could be cons1Dered static. Though critical 
to the model presented by Nicholson et al., it should be 
noted that the occurrence of “static” nonequilibrium 
pressure-head profiles in coarse materials under conditions 
of prolonged drainage has not been confirmed.

Discussing the paper by Nicholson et al. (1989), Barbour 
(1990) used steady-state flow relationships to analyse a two- 
layer system. Unlike the work of Nicholson et a l ., dynamic 
equilibrium conditions were assumed. Barbour concluded 
that the analysis of Nicholson et al. (1989) placed unneces­
sary restrictions on the moisture-retention characteristics of 
the cover material. The analysis also indicated that for the 
materials selected, the moisture-content profile that develops 
within the cover layer may be quite variable and dependent 
on the magnitude of water flux (in the form of infiltration) 
across the ground surface. Although Nicholson et al. (1990) 
clarified the concerns raised by Barbour, they also indicated 
the limitations of the static (Nicholson et al. 1989) and
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Fig. 1. Moisture-retention characteristics of the selected 
materials.

steady-state (Barbour 1990) approaches to the analysis of 
the problem. It was further indicated that a transient analysis 
of drainage was necessary to demonstrate the anticipated 
behaviour. Cons1Deration of drainage separately (with no 
infiltration) would prov1De a conservative analysis. The 
objective of this paper is to demonstrate the feasibility of 
the concept introduced by Nicholson et al. (1989) using a 
transient numerical model and to show that transient dis­
equilibrium is the basis for moisture retention in fine cover 
layers. More specifically, the purpose is to show numerically 
that “static” nonequilibrium conditions would prevail in the 
coarse layer for prolonged periods of time, such that the 
finer cover material would not drain.

Methodology
A one-dimensional, finite-element, saturated-unsaturated 

flow model (Abdul 1985) was applied to the problem of 
drainage through a two-layer vertical profile. The program 
was originally developed for two-dimensional, homogeneous, 
anisotropic, variably saturated, and hysteretic flow in 
slightly compressible porous media. The governing equation 
applicable to this study is somewhat simpler and is of the 
form

where Ks is the saturated hydraulic conductivity (LT-1), 
 is the relative hydraulic conductivity (0 < kr < 1), C is 

the specific moisture capacity (L-1), S is the degree of 
saturation (normalized moisture content), Ss is the specific 
storage (L-1), Ѱ is the pressure head (L), z is the coor­
dinate in the vertical direction (L), and t is time (T).

To accommodate layering, the original version of the pro­
gram was modified to allow for variation of soil properties 
with location. Specific storage was evaluated using
[2] Ss = pg(a + bn)

where p is the density of water, g is the acceleration owing 
to gravity, a is the compressibility of the soil material, b is 
the compressibility of water, and n is the porosity.

Freeze and Cherry (1979) gave the value for b and 
estimates of a for different materials. Values of com­
pressibility used were 4.4 x 10-10, 3.3 x 10-8, and

NOTES

1 x 10-7 m2/N for water, sand, and silt, respectively. For 
the simulations of this study, changes in storage caused by 
compressibility effects were extremely small, and thus the 
term could have been neglected with no perceptible change 
in the results.

Three sets of simulations were conducted, involving five 
different porous media. These included (i) the ‘‘silt” and 
“sand” used by Barbour (1990), (ii) Touchet silt loam over- 
lying a medium sand (Crab Creek sand described by Brooks 
and Corey 1964), and (iii) Touchet silt loam overlying a 
coarse sand.

Moisture-retention characteristics of the different mate­
rials are shown in Fig. 1. The relative hydraulic conductivity 
for each porous medium was calculated from the corre­
sponding moisture-retention curve using the method of 
Mualem (1976), as suggested by van Genuchten (1980), such 
that the moisture content (0) at any arbitrary pressure head 
was given by

and the relative hydraulic conductivity was calculated as

where 0r is the res1Dual moisture content, 0S is the saturated 
moisture content, and a and q are the curve-fitting param­
eters (α has a dimension L -1 and

The parameter α is a measure of the reciprocal of the AEV 
for the material and q relates to the maximum slope of the 
moisture-retention curve. Table 1 contains a summary of 
the hydraulic and the curve-fitting parameters for each mate­
rial. In [1] and [4], the hydraulic conductivity at a specified 
pressure head (or moisture content) is assumed to be the 
product of the hydraulic conductivity at saturation and the 
relative hydraulic conductivity, such that the relative hydrau­
lic conductivity attains unity as the moisture content 
approaches its saturated value and becomes zero at res1Dual 
moisture content.

Each layered system consists of 250 cm of the coarse-­
grained material overla1D by 100 cm of a finer cover mate­
rial. The choice of this geometry was a deliberate attempt 
to be consistent with the system discussed by Barbour (1990) 
and Nicholson et al. (1990). Furthermore, Nicholson et al. 
(1989) had shown that the effectiveness of a cover material 
as a barrier to influx of oxygen increases appreciably within 
the first metre of cover thickness, beyond which it does not 
change much. Other simulations (not shown here), with 
more than 250 cm of underlying coarse material, gave results 
that are consistent with the discussion that follows.

The initial condition cons1Dered the entire profile to be 
saturated, with the water table at the surface. The boundary 
conditions include zero flux across the top boundary and 
a time-dependent pressure head at the bottom which, in 
effect, lowered the water table linearly from the top of the 
profile to the bottom over the 1st h of the simulation period. 
This boundary was used to relax the constraint on the 
numerical model caused by large and sudden changes in the 
boundary condition. Within the time frame of the simula-
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Table 1. Summary of the hydraulic and curve-fitting parameters for the selected
materials

Material
AEV
(cm) Ө ө (cm/min)

α

(cm-1)

q

Silt* 10.0 0.074 0.381 0.045 0.028 3.60
Sand* 8.0 0.095 0.322 0.331 0.050 4.05
Touchet silt 165.0 0.18 0.485 0.035 0.004 7.05
Crab Creek sand 24.0 0.141 0.448 0.431 0.029 10.21
Coarse sand 8.0 0.026 0.422 7.80 0.077 9.74

N o t e :  α   and q are curve-fitting parameters in the van Genuchten (1980) model; all other 
parameters are measurable properties of the porous media.

* As presented by Barbour (1990).

Fig. 2. Variation in pressure head with elevation at selected times, (a) “Silt” overlying “sand” (Barbour 1990). (b) Touchet silt 
overlying a medium sand. (c) Touchet silt overlying a coarse sand.

tions (56 days), this boundary condition is physically equiva­
lent to an “instantaneous” lowering of the water table to 
the base of the profile. Variations in pressure head, total 
hydraulic head, and degree of saturation were tabulated for 
specified elevations over a period of 56 days.

Results and discussion
The results are summarized in Figs. 2-4. Because the water 

table was initially at the top of the column, an increasingly 
positive (hydrostatic) pressure head profile would extend

below the surface. To reduce the x-axes and because late-­
time data are of greatest relevance, only times corresponding 
to negative pressure head profiles are shown. The graphs 
are plotted for selected times to show the general trends of 
the hydraulic response.

The pressure-head profiles for the three pairs of soil mate­
rials (Figs. 2a- 2c) changed rapidly during early time and, 
in all cases, appear to be approaching a static condition by 
14 days. Relatively small changes occurred between 14 days 
and the conclusion of the simulations at 56 days. The final 
profiles are very similar for all pairs of soil materials. In
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Fig. 3. Variation in saturation with elevation at selected times, (a) “Silt” overlying “sand” (Barbour 1990). (b) Touchet silt overlying 
a medium sand. (c) Touchet silt overlying a coarse sand.

particular, within the cover layer, which remains saturated 
or at a relatively high moisture content, the pressure head 
approaches the 1:1 hydraulic equilibrium condition. For a 
distance below the cover, the pressure head is almost con­
stant and is close to the pressure head at which the moisture 
content approaches the res1Dual value for the respective 
coarse-layer materials (Fig. 1). At greater depth, as the water 
table is approached, the pressure-head profile again 
approaches the 1:1 hydrostatic condition. Although the final 
profiles appear to be approaching a static condition, they 
are far from the static equilibrium condition indicated on 
each graph. This is a consequence of the low value of relative 
hydraulic conductivity when moisture content approaches 
the res1Dual value.

The results of these simulations can be extended to address 
the situation that might lead to a zero pressure head (i.e., 
atmospheric) at the interface. The pressure head at the inter­
face between the medium-size material and the cover changed 
from about - 40 cm at 1 h to about - 65 cm at 56 days 
(Fig. 2b). For the case of a coarse underlying material, the 
pressure head at which the res1Dual saturation is first 
approached is about -10 cm (Fig. 1). Furthermore, the 
pressure head at the interface dropped only marginally 
throughout the duration of the simulation (Fig. 2c), keeping 
the interface pressure head at values more positive than 
- 30 cm at 56 days. One can envision coarser materials with

less negative pressure head values at res1Dual saturation, 
resulting in an interface pressure head that could practically 
be zero. It is therefore suggested that a condition of “drip” 
surface at the interface would be an end member of the con­
tinuous spectrum, satisfied only by a very coarse underlying 
material.

The changes in saturation for the three cases simulated 
are given in Fig. 3. For the materials cons1Dered by Barbour 
(1990), the degree of saturation in the sand declines more 
rap1Dly than in the silt (Fig. 3a). Nevertheless, even at a time 
of 2 h, the entire cover layer was at a water content less than 
saturation, which would substantially reduce the cover’s 
effectiveness as an oxygen barrier. Thus, although Barbour 
showed that the moisture content could be increased by 
application of a constant flux, under natural conditions, the 
cover material cons1Dered by Barbour would be an ineffec­
tive barrier after only a few hours of redistribution and 
drainage following precipitation events.

The saturation profiles for the Touchet silt over Crab 
Creek sand are substantially different (Fig. 36). In partic­
ular, although the sand drained rap1Dly, the silt remained 
fully saturated over its entire thickness for almost the entire 
duration of simulation. This observation is readily explained 
by reference to the pressure-head profiles. The maximum 
negative pressure head at the bottom of the silt layer is about 
-65 cm, corresponding to the pressure head at which the
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Fig. 4. Variation in hydraulic head with elevation at selected times, (a) “Silt” overlying sand (Barbour 1990). (b) Touchet silt overly­
ing a medium sand, (c) Touchet silt overlying a coarse sand.

underlying sand approaches its res1Dual moisture content 
value (Fig. 1). The maximum negative pressure head of 
about - 165 cm occurs at the surface of the cover, reflecting 
an equilibrium pressure head distribution in the cover. Thus 
at no point in the cover layer does the pressure head signifi­
cantly exceed the AEV of the Touchet silt material (- 165 cm, 
Fig. 1). The silt therefore remains saturated. For the case 
of Touchet silt overlying coarse sand, the silt remained fully 
saturated over its entire thickness throughout the duration 
of the simulation (Fig. 3c). In this case, the maximum 
negative pressure at the base of the silt layer is only about 
-25 cm, which again corresponds to the pressure head at 
which the coarse sand approaches the res1Dual moisture con­
tent (Fig. 1).

The hydraulic-head profiles for each soil pair are shown 
in Fig. 4. For both cases where the Touchet silt is the cover 
material (Figs. 4b and 4c), there is a negligible hydraulic gra­
dient across the cover layer throughout the duration of 
simulation. This is consistent with the static equilibrium 
pressure head profiles discussed previously. Clearly, if there 
is no hydraulic gradient across the cover layer, there can be 
no flow of water across the layer. In the absence of a sur­
face flux, as assumed in the present simulations, this implies 
that there is no drainage of the surface layer. This is consis­
tent with the fact that the magnitude of the pressure head 
did not exceed the AEV of the silt. In contrast with the cover

layer, the value of hydraulic gradient in the underlying mate­
rial is close to unity at ail times in the zones at res1Dual 
saturation. Hence drainage would proceed at the rate of the 
prevailing hydraulic conductivity within the drained zone, 
diminishing with time as the degree of saturation decreases. 
At late time, the profiles become almost static, though far 
from equilibrium, as a result of slow drainage caused by the 
very low values of hydraulic conductivity. The materials 
analysed by Barbour (1990) exhibit profiles across the cover 
layer that are significantly different from other pairs of 
material simulated, particularly at early time when the 
hydraulic gradient is appreciable (Fig. 4a) while saturation 
is high (Fig. 2a). Under these circumstances, the relative 
hydraulic conductivity (kr) would have a significant 
magnitude and drainage of the cover would be inevitable.

Conclusions
The numerical results showed that over periods of pro­

longed drainage the pressure head in the underlying coarse 
layer approached a constant “static” value corresponding 
to the pressure head at which the coarse material approached 
res1Dual saturation. As a consequence, the results demon­
strated that it is hydraulically possible to maintain a fully 
saturated layer of fine-texture material above a coarse mate­
rial, even though the water table may be far from the ground
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surface. Neglecting water losses by evapotranspiration and 
for an appropriate choice of cover material with an appro­
priate thickness, no infiltration would be necessary to main­
tain a fully saturated cover layer. Two fundamental char­
acteristics are important in assessing what thickness of a 
particular material can be maintained fully saturated. The 
first is the AEV of the cover layer. The second characteristic 
is the pressure head at which the underlying material 
approaches res1Dual saturation, in as much as this determines 
the pressure head at the interface. The thickness of the cover 
layer that would remain saturated after prolonged drainage 
and redistribution would be the difference in the magnitude 
of AEV of the cover material and the magnitude of the 
pressure head at the interface.

Though the results of the numerical study support the 
model of Nicholson et al. (1990), experimental verification 
is required. It is also recognised that the simulations do not 
address all of the practical design cons1Derations for fine­
grained covers. In particular, hysteretic effects caused by 
alternate cycles of wetting and drying conditions, reduced 
moisture content caused by evapotranspiration, and the 
effects of freezing and thawing on the integrity of the cover 
are important questions that need to be addressed. Further 
laboratory and modelling studies are in progress to better 
define the limitations of the concept. Preliminary results of 
the laboratory experiments show trends that are consistent 
with the discussion above.
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IGR Software List — December 11, 1991

BLOB3D

Description: 3-D, transient solute tranport with a parallelopiped source. Finite thickness 
medium. Constant, uniform groundwater velocity. Computes concentration of solute 
at any time and distance from source. Can handle source or solute decay. Can handle 
solute retardation.

Solution technique: Analytical.

Cost: $ 150

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

CFEMTRAN

Description: 2-D, transient solute transport in cross-section. Computes concentration 
of solute by solving the advection-dispersion equation. Mesh generation option for 
rectangular gr1Ds. Can also read a manually generated gr1D. Groundwater velocities 
are element-wise variable and can be read directly from a FLONETS output file. Can 
handle solute decay and retardation.

Solution technique: Numerical, Galerkin finite-element approach, matrix solution by 
Cholesky decomposition method.

Cost: $ 1000

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.
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System Requirements: A computer with sufficient memory for handling finite-element 
programs (640 Kb is recommended) and a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

CGAQUFEM

Description: 2-D, transient groundwater flow in plan-view. Computes distribution of 
heads and groundwater velocities. Confined, unconfined or mixed aquifer. Can han­
dle areal recharge when unconfined (or leakage through an aquitard from a water table 
aquifer if confined). Aquifer land aquitard thickness and hydraulic conductivity, ini­
tial head, water table head, recharge and pumping (or injection) rates are node-wise 
variable.

Solution technique: Numerical, Galerkin finite-element approach, matrix solution by in­
complete Cholesky decomposition and conjugate-gradient acceleration for efficiency. 
Solver reduces core storage requirements significantly for large problems.

Cost: $ 1000

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: A computer with sufficient memory for handling finite-element 
programs (640 Kb is recommended) and a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

CRAFLUSH

Description: 2-D, transient solute tranport in a series of parallel fractures. Can handle 
diffusion of solute into matrix. Computes concentration of solute at any time and 
distance from source.

Solution technique: Analytical.

Cost: $ 350

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.
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Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

FLONETS

Description: 2-D, steady-state groundwater flow in cross-section. Computes distribution 
of heads, stream functions and groundwater velocities. Mesh generation option for 
rectangular gr1Ds (can seek the water table in this case). Can also read a manually 
generated gr1D. Vertical and horizontal hydraulic conductivity, porosity and principal 
direction angle are element-wise variable.

Solution technique: Numerical, Galerkin finite-element approach, matrix solution by
Cholesky decomposition method.

Cost: $ 500

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code and a short 
read.me file on the distribution disk. Two published papers which discuss (1) the 
mathematical theory and (2) a practical application of an earlier version of the pro­
gram to the Borden plume.

Distribution notes: The program source code, two example data sets and output and 
brief documentation are distributed as machine readable files on an IBM compatible 
floppy disk (5.25 or 3.5 inch disks are available). The user can inspect and modify the 
source code as desired.

System Requirements: A computer with sufficient memory for handling finite-element 
programs (640 Kb is recommended) and a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

FRACTRAN

Description: A 2-D cross-sectional model of groundwater flow and contaminant trans­
port in a discretely fractured, porous medium. Fractures are represented by line 
elements while matrix blocks are represented by rectangular elements. The program 
computes both the steady-state flow solution and the transient evolution of a contam­
inant plume. Groundwater flow, and advective and diffusive contaminant transport
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within the porous media matrix blocks is rigorously treated. Retardation and first- 
order decay of the contaminant can be simulated. The algorithm makes use of the 
LTG scheme which does not require timestepping when evaluating the solution at 
any future time and permits coarser gr1Ds than conventional finite-element models. A 
separate preprocessor program is prov1Ded for ease in assigning fracture and porous 
media properties within zones having diffferent physical properties. The model also 
has the option to solve for flow and transport in a non-fractured porous medium.

Solution technique: Numerical, Laplace Transform Galerkin(LTG) finite-element approach, 
second-order ILU preconditioned iterative solver with ORTHOMIN acceleration.

Cost: $ 2500

Programming language: Fortran 77

Documentation: A comprehensive user’s manual and descriptive comments interspersed 
with the source code. Several example problem data files are supplied.

Distribution notes: The PREFRAC, FRACTRAN, POSTFRAC and FPLOT executable 
and source codes, example data sets and output are distributed as machine readable 
files on an IBM compatible floppy disk (5.25 or 3.5 inch disks are available).

System Requirements: Executable code is prov1Ded for IBM-compatible 386 based ma­
chines. Source code is prov1Ded which can be compiled with any suitable Fortran 77 
compiler. Plotting routines are prov1Ded for 386 based machines and VMS machines 
running DISSPLA. NOTE: Ability to read an IBM formatted diskette is required.

HPATCH3D

Description: 3-D, transient solute tranport with a horizontal patch source which can be 
located at any depth in the aquifer. Finite thickness medium. Constant, uniform 
groundwater velocity. Computes concentration of solute at any time and distance 
from source. Can handle source or solute decay. Can handle solute retardation.

Solution technique: Analytical.

Cost: $ 150

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.
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LINE2D

Description: 2-D, transient solute tranport with a vertical line source at x=0. Finite 
thickness medium. Constant, uniform groundwater velocity. Computes concentration 
of solute at any time and distance from source. Can handle source or solute decay. 
Can handle solute retardation.

Solution technique: Analytical.

Cost: $ 150

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

LTGPLAN

Description: A quasi 3-D model of contaminant transport in a system consisting of an 
optional layered aquitard overlying an aquifer. The aquifer may be semi-confined, 
unconfined or of mixed type. Uniform groundwater fluxes can be assigned or variable 
fluxes can be imported from a separate flow solution. Contaminant movement in 
the aquitard is assumed to be vertical and is coupled (through the contaminant flux 
at the aquifer/aquitard interface) to a 2-D areal transport model for the aquifer.
A 1-D finite element model is used to calculate the contaminant flux entering the 
aquifer and a 2-D triangular finite-element model is used to compute the aquifer 
concentrations. Numerous sources, with varying strengths and durations, can be 
located anywhere in the aquitard or on the aquifer surface. Retardation and first- 
order decay of the contaminant can be simulated. The aquitard layering may be 
different under each source area, allowing the user to simulate changes in stratigraphy 
due to the emplacement of the source. The program computes concentration versus 
time at the aquifer node points. The algorithm makes use of the LTG scheme which 
does not require timestepping when evaluating the solution at any future time and 
permits coarser gr1Ds than conventional finite-element models.

Solution technique: Numerical, Laplace Transform Galerkin(LTG) finite-element approach, 
ILU pre-conditioned, iterative solver with ORTHOMIN acceleration.

Cost: $ 1000
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Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code portion of LT- 
GPLAN. An example problem with data files is supplied.

Distribution notes: The LTGPLAN executable code, a portion of the LTGPLAN source 
code, INVERT postprocessor executable code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available).

System Requirements: Executable code is available for most commonly used systems 
including those running VAX Fortran, 80386’s and Unix-based machines. NOTE: 
Ability to read an IBM formatted diskette is required.

OGATA

Description: 1-D, transient solute tranport. Computes concentration and flux of solute 
at any time and distance from source. Can handle solute retardation. 1Dentical to 
SUPERlD except it can’t handle time-variant source.

Solution technique: Analytical. Ogata-Banks solution. 

Cost: $ 50

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

ORTHOFEM

Description: Subroutines implementing the iterative, preconditioned conjugate gradient 
and ORTHOMIN methods for solving banded or sparse matrix equations. The con­
jugate gradient acceleration technique is appropriate for symmetric matrices, while 
ORTHOMIN acceleration is applicable for asymmetric matrices. Preconditioning of 
the coefficient matrix is by first-order, incomplete lower-upper (ELU) factorization. 
The subroutines are designed for efficient incorporation into finite-element programs 
with any arbitrary element type. Modifications may need to be made to accommodate 
either mixed element types of the same dimensionality or finite-difference programs.
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Solution technique: Numerical. 

Cost: $ 400

Programming language: Fortran 77

Documentation: A short manual outlining the theory, summarizing the algorithms and 
describing the steps necessary for incorporating the subroutines into a finite-element 
code. An example implementation is outlined. Descriptive comments are interspersed 
with the source code.

Distribution notes: The subroutine source code is distributed as machine readable files 
on an IBM compatible floppy disk (5.25 or 3.5 inch disks are available). The source 
code may be modified and customized as necessary to be compatible with the user’s 
main program.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

PATCH3D

Description: 3-D, transient solute tranport with a vertical patch source at x=0. Finite 
thickness medium. Constant, uniform groundwater velocity. Computes concentration 
of solute at any time and distance from source. Can handle source or solute decay. 
Can handle solute retardation.

Solution technique: Analytical. 

Cost: $ 150

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

RCRACK

Description: 2-D, radially symetric, transient solute tranport along a single fracture. Can 
handle diffusion of solute into matrix. Computes concentration of solute at any time 
and distance from source.
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Solution technique: Analytical.

Cost: $ 150

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

SUPER1D

Description: 1-D, transient solute tranport. Computes concentration and flux of solute at 
any time and distance from source. Source strength can vary with time. Can handle 
solute retardation.

Solution technique: Analytical. Ogata-Banks solution with superposition to handle time- 
variant source.

Cost: $ 50

Programming language: Fortran 77

Documentation: Descriptive comments interspersed with the source code.

Distribution notes: The program source code, example data sets and output are dis­
tributed as machine readable files on an IBM compatible floppy disk (5.25 or 3.5 inch 
disks are available). The user can inspect and modify the source code as desired.

System Requirements: Any computer with a Fortran 77 compiler. NOTE: Ability to 
read an IBM formatted diskette is required.

WCGR Software List — December 11, 1991

CROSSFLO

Description: 2-D, steady-state groundwater flow in cross-section. Menu-driven, graphical 
interface for all steps of problem solution including mesh generation (for simple layered 
gr1Ds), data input and plotting of results, (can seek the water table in the upper 
layer). Computes distribution of heads, stream functions and groundwater velocities.
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Vertical and horizontal hydraulic conductivity, porosity and principal direction angle 
are element-wise variable.

Solution technique: Numerical, Galerkin finite-element approach, matrix solution by 
Cholesky decomposition method.

Cost: $ 2000

Programming language: GFA-BASIC

Documentation: Comprehensive 60-page User’s Manual with a chapter on model verifi­
cation and illustrative examples. Two published papers which discuss (1) the mathe­
matical theory and (2) a practical application of an earlier version of the program to 
the Borden plume.

Distribution notes: The program executable code and example data sets are distributed 
as machine readable files on an Atari formatted 3.5 inch floppy disk. Copies of the 
source are not distributed.

System Requirements: An Atari ST computer with sufficient memory for handling finite- 
element programs (1040 Kb is recommended).

GR1D BUILDER

Description: 2-D, triangular element mesh generator. Interactive, menu-driven, graphical 
interface. Can generate a completely irregular mesh with internal subdivisions. Can 
refine any subset of elements. Zoom feature facilitates extremely detailed refinement. 
Up to 32000 elements, 16000 nodes capacity (with 4 Mb of RAM). Built-in node- 
numbering scheme for bandw1Dth optimization. Flexible I/O routines allow export of 
gr1D data to any 2-D triangular finite element model (which uses triangular elements) 
or import of the user’s existing gr1Ds.

Cost: $ 2000

Programming language: FTN77/386 (University of Salford Fortran 77 compiler). Inter- 
acter graphics subroutine library (Interactive Software Limited)

Documentation: Comprehensive User’s Manual with a step-by-step hands-on demonstra­
tion exercise. Extensive, context-sensitive, on-line help screens.

Distribution notes: The program executable code and example data sets are distributed 
as machine readable files on an IBM formatted floppy disk (5.25 or 3.5 inch disks are 
available). Copies of the source are not distributed. The FTN77/386 run-time disk is 
distributed free-of-charge as part of the package.
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System Requirements: An IBM compatible 80386 microcomputer with Microsoft com­
patible mouse, VGA card and monitor (colour recommended), hard disk, 2 Mb RAM 
(4 Mb recommended). An HP-GL compatible plotter is supported and recommended.
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